🗣 Facebbok’s textless-lib: a Library for Textless Spoken Language Processing
Github: https://github.com/facebookresearch/textlesslib
Code examples: https://github.com/facebookresearch/textlesslib/tree/main/examples
Paper: https://arxiv.org/abs/2202.07359v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/textlesslib
Code examples: https://github.com/facebookresearch/textlesslib/tree/main/examples
Paper: https://arxiv.org/abs/2202.07359v1
Dataset: https://paperswithcode.com/dataset/librispeech
@ai_machinelearning_big_data
❤5👍4
🔎 Anomalib: A Deep Learning Library for Anomaly Detection
Github: https://github.com/openvinotoolkit/anomalib
Docs: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2202.08341v1
Dataset: https://paperswithcode.com/dataset/btad
@ai_machinelearning_big_data
Github: https://github.com/openvinotoolkit/anomalib
Docs: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2202.08341v1
Dataset: https://paperswithcode.com/dataset/btad
@ai_machinelearning_big_data
🔥11👍5
This media is not supported in your browser
VIEW IN TELEGRAM
💻 Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
Github: https://github.com/nvlabs/instant-ngp
HashNeRF-pytorch: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2201.05989v1
@ai_machinelearning_big_data
Github: https://github.com/nvlabs/instant-ngp
HashNeRF-pytorch: https://openvinotoolkit.github.io/anomalib/
Paper: https://arxiv.org/abs/2201.05989v1
@ai_machinelearning_big_data
👍16
Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
Github: https://github.com/tzer-anonbot/tzer
Docs: https://tzer.readthedocs.io/en/latest/markdown/artifact.html
Paper: https://arxiv.org/abs/2202.09947v1
@ai_machinelearning_big_data
👍6❤2
🔥 The Complete Collection of Data Science Cheat Sheets
https://www.kdnuggets.com/2022/02/complete-collection-data-science-cheat-sheets-part-2.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/02/complete-collection-data-science-cheat-sheets-part-2.html
@ai_machinelearning_big_data
KDnuggets
The Complete Collection of Data Science Cheat Sheets - Part 2 - KDnuggets
A collection of cheat sheets that will help you prepare for a technical interview on Data Structures & Algorithms, Machine learning, Deep Learning, Natural Language Processing, Data Engineering, Web Frameworks.
👍9🔥5❤4
☑️ One-shot Affordance Detection
Github: https://github.com/lhc1224/OSAD_Net
Paper: https://arxiv.org/abs/2202.12076v1
Dataset: https://paperswithcode.com/dataset/pad
@ai_machinelearning_big_data
Github: https://github.com/lhc1224/OSAD_Net
Paper: https://arxiv.org/abs/2202.12076v1
Dataset: https://paperswithcode.com/dataset/pad
@ai_machinelearning_big_data
👍4❤1
👁 Visual Attention Network (VAN)
Github: https://github.com/Visual-Attention-Network/VAN-Classification
Paper: https://arxiv.org/pdf/2202.09741.pdf
Dataset: https://paperswithcode.com/dataset/ade20k
@ai_machinelearning_big_data
Github: https://github.com/Visual-Attention-Network/VAN-Classification
Paper: https://arxiv.org/pdf/2202.09741.pdf
Dataset: https://paperswithcode.com/dataset/ade20k
@ai_machinelearning_big_data
👍10
📱 Best it channels in telegram
https://news.1rj.ru/str/ArtificialIntelligencedl - ai
https://news.1rj.ru/str/pythonl - largest python
https://news.1rj.ru/str/Machinelearningtest - machine learning test
https://news.1rj.ru/str/pro_python_code - python ru
https://news.1rj.ru/str/datascienceiot - ds, ml free books
https://news.1rj.ru/str/programming_books_it
https://news.1rj.ru/str/pythonlbooks - python books
https://news.1rj.ru/str/javanoscriptv - javanoscript channel
https://news.1rj.ru/str/about_javanoscript - advanced js
https://news.1rj.ru/str/JavaScript_testit - js tests
https://news.1rj.ru/str/Golang_google - Go channel
https://news.1rj.ru/str/golangl. -golang chat
https://news.1rj.ru/str/golang_jobsgo -golang jobs
https://news.1rj.ru/str/neural - neural nets
https://news.1rj.ru/str/hashdev - web development
https://news.1rj.ru/str/htmlcssjavas - web
https://news.1rj.ru/str/hr_itwork - jobs
https://news.1rj.ru/str/linux_kal - kali linux
https://news.1rj.ru/str/machinee_learning - ml chat
https://news.1rj.ru/str/linuxkalii - linux chat
https://news.1rj.ru/str/machinelearning_ru - ml ru
https://news.1rj.ru/str/python_testit - python tests
https://news.1rj.ru/str/csharp_ci- c#
https://news.1rj.ru/str/tensorflowblog - tensorflow
https://news.1rj.ru/str/Django_pythonl
https://news.1rj.ru/str/ArtificialIntelligencedl - ai
https://news.1rj.ru/str/pythonl - largest python
https://news.1rj.ru/str/Machinelearningtest - machine learning test
https://news.1rj.ru/str/pro_python_code - python ru
https://news.1rj.ru/str/datascienceiot - ds, ml free books
https://news.1rj.ru/str/programming_books_it
https://news.1rj.ru/str/pythonlbooks - python books
https://news.1rj.ru/str/javanoscriptv - javanoscript channel
https://news.1rj.ru/str/about_javanoscript - advanced js
https://news.1rj.ru/str/JavaScript_testit - js tests
https://news.1rj.ru/str/Golang_google - Go channel
https://news.1rj.ru/str/golangl. -golang chat
https://news.1rj.ru/str/golang_jobsgo -golang jobs
https://news.1rj.ru/str/neural - neural nets
https://news.1rj.ru/str/hashdev - web development
https://news.1rj.ru/str/htmlcssjavas - web
https://news.1rj.ru/str/hr_itwork - jobs
https://news.1rj.ru/str/linux_kal - kali linux
https://news.1rj.ru/str/machinee_learning - ml chat
https://news.1rj.ru/str/linuxkalii - linux chat
https://news.1rj.ru/str/machinelearning_ru - ml ru
https://news.1rj.ru/str/python_testit - python tests
https://news.1rj.ru/str/csharp_ci- c#
https://news.1rj.ru/str/tensorflowblog - tensorflow
https://news.1rj.ru/str/Django_pythonl
🔥9👍3
💥 Local and Global GANs with Semantic-Aware Upsampling for Image Generation
Github: https://github.com/Ha0Tang/LGGAN
Paper: https://arxiv.org/abs/2203.00047v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
Github: https://github.com/Ha0Tang/LGGAN
Paper: https://arxiv.org/abs/2203.00047v1
Dataset: https://paperswithcode.com/dataset/cityscapes
@ai_machinelearning_big_data
❤5👍3
🎲 Bayesian IRT models in Python
Github: https://github.com/nd-ball/py-irt
Paper: https://arxiv.org/abs/2203.01282v1
Bayesian IRT: https://m-clark.github.io/models-by-example/bayesian-irt.html
@ai_machinelearning_big_data
Github: https://github.com/nd-ball/py-irt
Paper: https://arxiv.org/abs/2203.01282v1
Bayesian IRT: https://m-clark.github.io/models-by-example/bayesian-irt.html
@ai_machinelearning_big_data
👍8🔥2
Hello everyone. My name is Andrew and for several years I've been working on to make the learning path for ML
easier.
I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.
After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.
You can read the book absolutely free at the link below:
-> https://themlsbook.com
easier.
I wrote a manual on machine learning that
everyone understands - Machine Learning Simplified Book. The main purpose of my book is to build an intuitive
understanding of how algorithms work through basic examples. In order to understand the presented material,
it is enough to know basic mathematics and linear algebra.
After reading this book, you will know the basics of supervised learning, understand complex mathematical models, understand the entire pipeline of a typical ML project, and also be able to share your knowledge with colleagues from related industries and with technical
professionals.
You can read the book absolutely free at the link below:
-> https://themlsbook.com
👍35❤7🔥6👎1
This media is not supported in your browser
VIEW IN TELEGRAM
⚫️ Beyond 3D Siamese Tracking: A Motion-Centric Paradigm for 3D Single Object Tracking in Point Clouds
Github: https://github.com/ghostish/open3dsot
Paper: https://arxiv.org/abs/2203.01730v1
Dataset: https://paperswithcode.com/dataset/kitti
@ai_machinelearning_big_data
Github: https://github.com/ghostish/open3dsot
Paper: https://arxiv.org/abs/2203.01730v1
Dataset: https://paperswithcode.com/dataset/kitti
@ai_machinelearning_big_data
❤10🔥3👍1
🎓 StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation
Github: https://github.com/royorel/StyleSDF
Paper: https://arxiv.org/abs/2112.11427v1
Project: https://stylesdf.github.io/
Dataset: https://paperswithcode.com/dataset/ffhq
@ai_machinelearning_big_data
Github: https://github.com/royorel/StyleSDF
Paper: https://arxiv.org/abs/2112.11427v1
Project: https://stylesdf.github.io/
Dataset: https://paperswithcode.com/dataset/ffhq
@ai_machinelearning_big_data
👍7❤4
This media is not supported in your browser
VIEW IN TELEGRAM
🔲 Kubric A data generation pipeline for creating semi-realistic synthetic multi-object videos
Github: https://github.com/google-research/kubric
Paper: https://arxiv.org/abs/2203.03570v1
Docs: https://kubric.readthedocs.io/
Dataset: https://github.com/deepmind/multi_object_datasets
@ai_machinelearning_big_data
Github: https://github.com/google-research/kubric
Paper: https://arxiv.org/abs/2203.03570v1
Docs: https://kubric.readthedocs.io/
Dataset: https://github.com/deepmind/multi_object_datasets
@ai_machinelearning_big_data
👍11
♟ Probabilistic Warp Consistency for Weakly-Supervised Semantic Correspondences
Github: https://github.com/PruneTruong/DenseMatching
Paper: https://arxiv.org/abs/2203.04279v1
Project: https://prunetruong.com/research/warpc
Dataset: https://paperswithcode.com/dataset/pf-pascal
@ai_machinelearning_big_data
Github: https://github.com/PruneTruong/DenseMatching
Paper: https://arxiv.org/abs/2203.04279v1
Project: https://prunetruong.com/research/warpc
Dataset: https://paperswithcode.com/dataset/pf-pascal
@ai_machinelearning_big_data
❤7👍3
🗿 StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis
Github: https://github.com/facebookresearch/StyleNeRF
Video: http://jiataogu.me/style_nerf
Paper: https://arxiv.org/abs/2110.08985
Project: http://jiataogu.me/style_nerf/
Dataset: https://github.com/facebookresearch/StyleNeRF#dataset
@ai_machinelearning_big_data
Github: https://github.com/facebookresearch/StyleNeRF
Video: http://jiataogu.me/style_nerf
Paper: https://arxiv.org/abs/2110.08985
Project: http://jiataogu.me/style_nerf/
Dataset: https://github.com/facebookresearch/StyleNeRF#dataset
@ai_machinelearning_big_data
👍15❤3🔥1
This media is not supported in your browser
VIEW IN TELEGRAM
💥 A Single Correspondence Is Enough: Robust Global Registration to Avoid Degeneracy in Urban Environments
Github: https://github.com/url-kaist/quatro
Video: http://jiataogu.me/style_nerf
Paper: https://arxiv.org/abs/2203.06612v1
Dataset: https://paperswithcode.com/dataset/kitti
@ai_machinelearning_big_data
Github: https://github.com/url-kaist/quatro
Video: http://jiataogu.me/style_nerf
Paper: https://arxiv.org/abs/2203.06612v1
Dataset: https://paperswithcode.com/dataset/kitti
@ai_machinelearning_big_data
🔥9👍2
🦾 Test Suites for Validating ML Models & Data
Github: https://github.com/deepchecks/deepchecks
Example: https://docs.deepchecks.com/en/stable/examples/guides/quickstart_in_5_minutes.html
Docs: https://docs.deepchecks.com/
Paper: https://arxiv.org/abs/2203.08491v1
Blog: https://deepchecks.com/blog/
@ai_machinelearning_big_data
Github: https://github.com/deepchecks/deepchecks
Example: https://docs.deepchecks.com/en/stable/examples/guides/quickstart_in_5_minutes.html
Docs: https://docs.deepchecks.com/
Paper: https://arxiv.org/abs/2203.08491v1
Blog: https://deepchecks.com/blog/
@ai_machinelearning_big_data
❤18👍8
🧷 HybridNets: End2End Perception Network
Github: https://github.com/datvuthanh/HybridNets
Paper: https://arxiv.org/abs/2203.09035v1
Dataset: https://paperswithcode.com/dataset/bdd100k
Tasks: https://paperswithcode.com/task/traffic-object-detection
@ai_machinelearning_big_data
Github: https://github.com/datvuthanh/HybridNets
Paper: https://arxiv.org/abs/2203.09035v1
Dataset: https://paperswithcode.com/dataset/bdd100k
Tasks: https://paperswithcode.com/task/traffic-object-detection
@ai_machinelearning_big_data
👍15
How to Generate Synthetic Tabular Dataset
https://www.kdnuggets.com/2022/03/generate-tabular-synthetic-dataset.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/03/generate-tabular-synthetic-dataset.html
@ai_machinelearning_big_data
👍10❤1