Machinelearning – Telegram
383K subscribers
4.46K photos
859 videos
17 files
4.89K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
Мониторинги показывают, что GPU загружены, при этом видно, что они не потребляют электричества. Что делать? Хорошая статья с ответом на этот вопрос.

Будет полезно почитать, даже если вы занимаетесь обучением моделек на домашних GPU.
👍15🔥2😁1😢1
🔹 Exploring a Fine-Grained Multiscale Method for Cross-Modal Remote Sensing Image Retrieval

Github: https://github.com/xiaoyuan1996/AMFMN

Paper: https://arxiv.org/abs/2204.09868v1

Dataset: https://paperswithcode.com/dataset/kitti

@ai_machinelearning_big_data
🔥4👍2🎉2😢1
🧊 Focal Sparse Convolutional Networks for 3D Object Detection (CVPR 2022, Oral)

Github: https://github.com/dvlab-research/focalsconv

Paper: https://arxiv.org/abs/2204.12463

Dataset: https://paperswithcode.com/dataset/nuscenes


@ai_machinelearning_big_data
🔥4👍21🎉1
🔝 OPT (Open Pre-trained Transformers) is a family of NLP models trained on billions of tokens of text obtained from the internet.

175B GPT-3

Github: https://github.com/facebookresearch/metaseq

Instructions: https://github.com/facebookresearch/metaseq/blob/main/docs/setup.md

Paper: https://arxiv.org/abs/2205.01068v2

Dataset: https://paperswithcode.com/dataset/superglue

@ai_machinelearning_big_data
👍92🔥2👎1👏1
👍3👎3
👍73🔥2
📌 Список потрясающих фреймворков, библиотек и программного обеспечения для машинного обучения (по языкам)

Статья

@ai_machinelearning_big_data
👍15👎4
↘️ PyRDF2Vec: A Python Implementation and Extension of RDF2Vec

Create a 2D feature matrix from a Knowledge Graph for downstream ML tasks.

Github: https://github.com/IBCNServices/pyRDF2Vec

RDF2Vec: http://rdf2vec.org/

Paper: https://arxiv.org/abs/2205.02283v1

Examples: https://github.com/IBCNServices/pyRDF2Vec/tree/main/examples

How to Create Representations of Entities in a Knowledge Graph

@ai_machinelearning_big_data
👍94🔥1
📝 EasyNLP is an easy-to-use NLP development and application toolkit in PyTorch

$ pip install pai-easynlp.

Github: https://github.com/alibaba/EasyNLP

Paper: https://arxiv.org/abs/2205.03071v1

Dataset: https://paperswithcode.com/dataset/natural-questions

Documentation: https://www.yuque.com/easyx/easynlp/kkhkai

@ai_machinelearning_big_data
👍21
🗯 DeepFilterNet

A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.

Github: https://github.com/rikorose/deepfilternet

Paper: https://arxiv.org/abs/2205.05474v1

Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2

@ai_machinelearning_big_data
👍10🔥4
KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning

Github: https://github.com/explainableml/kg-sp

Paper: https://arxiv.org/abs/2205.06784v1

Dataset: https://paperswithcode.com/dataset/conceptnet

@ArtificialIntelligencedl
👍12👎3
AdaVAE: Exploring Adaptive GPT-2s in Variational Auto-Encoders for Language Modeling

First VAE framework empowered with adaptive GPT-2s (AdaVAE).

Github: https://github.com/ImKeTT/adavae

Paper: https://arxiv.org/abs/2205.05862v1

Task: https://paperswithcode.com/task/representation-learning
👍14👎1
Efficient and performance-portable vector software

CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.

Code: https://github.com/google/highway

Paper: https://arxiv.org/abs/2205.05982v1

Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md

@ai_machinelearning_big_data
👍14
[RK-Net]Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization

Github: https://github.com/AggMan96/RK-Net

Paper: https://zhunzhong.site/paper/RK_Net.pdf

Dataset: https://paperswithcode.com/dataset/university-1652

@ai_machinelearning_big_data
👍10👎3
Group R-CNN for Point-based Weakly Semi-supervised Object Detection

Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.

Code: https://github.com/jshilong/grouprcnn

Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation

Paper: https://arxiv.org/abs/2205.05920v1

Task: https://paperswithcode.com/task/object-detection

Dataset: https://paperswithcode.com/dataset/coco

@ai_machinelearning_big_data
👍121🔥1