↘️ PyRDF2Vec: A Python Implementation and Extension of RDF2Vec
Create a 2D feature matrix from a Knowledge Graph for downstream ML tasks.
Github: https://github.com/IBCNServices/pyRDF2Vec
RDF2Vec: http://rdf2vec.org/
Paper: https://arxiv.org/abs/2205.02283v1
Examples: https://github.com/IBCNServices/pyRDF2Vec/tree/main/examples
How to Create Representations of Entities in a Knowledge Graph
@ai_machinelearning_big_data
Create a 2D feature matrix from a Knowledge Graph for downstream ML tasks.
Github: https://github.com/IBCNServices/pyRDF2Vec
RDF2Vec: http://rdf2vec.org/
Paper: https://arxiv.org/abs/2205.02283v1
Examples: https://github.com/IBCNServices/pyRDF2Vec/tree/main/examples
How to Create Representations of Entities in a Knowledge Graph
@ai_machinelearning_big_data
👍9❤4🔥1
Centroid Initialization Methods for k-means Clustering
https://www.kdnuggets.com/2020/06/centroid-initialization-k-means-clustering.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2020/06/centroid-initialization-k-means-clustering.html
@ai_machinelearning_big_data
👍10
This media is not supported in your browser
VIEW IN TELEGRAM
🪄 Language Models Can See: Plugging Visual Controls in Text Generation
Github: https://github.com/yxuansu/magic
Paper: https://arxiv.org/abs/2205.02655v1
Dataset: https://paperswithcode.com/dataset/coco
Contrastive Framework for Neural Text Generation: https://github.com/yxuansu/simctg
Colab: https://colab.research.google.com/drive/19lyyMXDRNr-Op8vwUOiRmbhMxI_s3rwW?usp=sharing
@ai_machinelearning_big_data
Github: https://github.com/yxuansu/magic
Paper: https://arxiv.org/abs/2205.02655v1
Dataset: https://paperswithcode.com/dataset/coco
Contrastive Framework for Neural Text Generation: https://github.com/yxuansu/simctg
Colab: https://colab.research.google.com/drive/19lyyMXDRNr-Op8vwUOiRmbhMxI_s3rwW?usp=sharing
@ai_machinelearning_big_data
👍9🔥2❤1🎉1
📝 EasyNLP is an easy-to-use NLP development and application toolkit in PyTorch
$ pip install pai-easynlp.
Github: https://github.com/alibaba/EasyNLP
Paper: https://arxiv.org/abs/2205.03071v1
Dataset: https://paperswithcode.com/dataset/natural-questions
Documentation: https://www.yuque.com/easyx/easynlp/kkhkai
@ai_machinelearning_big_data
$ pip install pai-easynlp.
Github: https://github.com/alibaba/EasyNLP
Paper: https://arxiv.org/abs/2205.03071v1
Dataset: https://paperswithcode.com/dataset/natural-questions
Documentation: https://www.yuque.com/easyx/easynlp/kkhkai
@ai_machinelearning_big_data
👍21
🗯 DeepFilterNet
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.
Github: https://github.com/rikorose/deepfilternet
Paper: https://arxiv.org/abs/2205.05474v1
Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2
@ai_machinelearning_big_data
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.
Github: https://github.com/rikorose/deepfilternet
Paper: https://arxiv.org/abs/2205.05474v1
Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2
@ai_machinelearning_big_data
👍10🔥4
KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning
Github: https://github.com/explainableml/kg-sp
Paper: https://arxiv.org/abs/2205.06784v1
Dataset: https://paperswithcode.com/dataset/conceptnet
@ArtificialIntelligencedl
Github: https://github.com/explainableml/kg-sp
Paper: https://arxiv.org/abs/2205.06784v1
Dataset: https://paperswithcode.com/dataset/conceptnet
@ArtificialIntelligencedl
👍12👎3
🦉 OWL-ViT: Open-World Object Detection with Vision Transformers
OWL-ViT is an open-vocabulary object detector.
Github: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
Paper: https://arxiv.org/abs/2205.06230
Colab: https://colab.research.google.com/github/google-research/scenic/blob/main/scenic/projects/owl_vit/notebooks/OWL_ViT_minimal_example.ipynb
Dataset: https://paperswithcode.com/dataset/objects365
@ai_machinelearning_big_data
OWL-ViT is an open-vocabulary object detector.
Github: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
Paper: https://arxiv.org/abs/2205.06230
Colab: https://colab.research.google.com/github/google-research/scenic/blob/main/scenic/projects/owl_vit/notebooks/OWL_ViT_minimal_example.ipynb
Dataset: https://paperswithcode.com/dataset/objects365
@ai_machinelearning_big_data
👍12🔥3
AdaVAE: Exploring Adaptive GPT-2s in Variational Auto-Encoders for Language Modeling
First VAE framework empowered with adaptive GPT-2s (AdaVAE).
Github: https://github.com/ImKeTT/adavae
Paper: https://arxiv.org/abs/2205.05862v1
Task: https://paperswithcode.com/task/representation-learning
First VAE framework empowered with adaptive GPT-2s (AdaVAE).
Github: https://github.com/ImKeTT/adavae
Paper: https://arxiv.org/abs/2205.05862v1
Task: https://paperswithcode.com/task/representation-learning
👍14👎1
Efficient and performance-portable vector software
CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.
Code: https://github.com/google/highway
Paper: https://arxiv.org/abs/2205.05982v1
Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md
@ai_machinelearning_big_data
CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.
Code: https://github.com/google/highway
Paper: https://arxiv.org/abs/2205.05982v1
Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md
@ai_machinelearning_big_data
👍14
[RK-Net]Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization
Github: https://github.com/AggMan96/RK-Net
Paper: https://zhunzhong.site/paper/RK_Net.pdf
Dataset: https://paperswithcode.com/dataset/university-1652
@ai_machinelearning_big_data
Github: https://github.com/AggMan96/RK-Net
Paper: https://zhunzhong.site/paper/RK_Net.pdf
Dataset: https://paperswithcode.com/dataset/university-1652
@ai_machinelearning_big_data
👍10👎3
Group R-CNN for Point-based Weakly Semi-supervised Object Detection
Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.
Code: https://github.com/jshilong/grouprcnn
Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation
Paper: https://arxiv.org/abs/2205.05920v1
Task: https://paperswithcode.com/task/object-detection
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.
Code: https://github.com/jshilong/grouprcnn
Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation
Paper: https://arxiv.org/abs/2205.05920v1
Task: https://paperswithcode.com/task/object-detection
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍12❤1🔥1
Towards Unified Keyframe Propagation Models
A two-stream approach, where high-frequency features interact locally and low-frequency features interact globally.
Github: https://github.com/runwayml/guided-inpainting
Paper: https://arxiv.org/abs/2205.09731v1
Dataset: https://paperswithcode.com/dataset/places
@ai_machinelearning_big_data
A two-stream approach, where high-frequency features interact locally and low-frequency features interact globally.
Github: https://github.com/runwayml/guided-inpainting
Paper: https://arxiv.org/abs/2205.09731v1
Dataset: https://paperswithcode.com/dataset/places
@ai_machinelearning_big_data
👀 Sockeye
Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch.
Code: https://github.com/awslabs/sockeye
Tutorial: https://github.com/awslabs/sockeye/blob/main/docs/tutorials/wmt_large.md
Paper: https://arxiv.org/abs/2205.06618v1
@ai_machinelearning_big_data
Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch.
Code: https://github.com/awslabs/sockeye
Tutorial: https://github.com/awslabs/sockeye/blob/main/docs/tutorials/wmt_large.md
Paper: https://arxiv.org/abs/2205.06618v1
@ai_machinelearning_big_data
👍13❤2🔥2
🖇 A graph-transformer for whole slide image classification
Graph-Transformer (GT) that fuses a graph-based representation of an WSI and a vision transformer for processing pathology images.
Github: https://github.com/vkola-lab/tmi2022
Paper: https://arxiv.org/abs/2205.09671v1
Dataset: https://paperswithcode.com/dataset/imagenet
Graph-Transformer (GT) that fuses a graph-based representation of an WSI and a vision transformer for processing pathology images.
Github: https://github.com/vkola-lab/tmi2022
Paper: https://arxiv.org/abs/2205.09671v1
Dataset: https://paperswithcode.com/dataset/imagenet
👍11👎3
☑️ TorchSSL
A Pytorch-based toolbox for semi-supervised learning.
Code: https://github.com/torchssl/torchssl
Paper: https://arxiv.org/abs/2205.07246v1
Logs and weights: https://onedrive.live.com/?authkey=%21AJ%2DwKMa%2DENcbk1s&id=AF426F3217F6565A%213488&cid=AF426F3217F6565A
@ai_machinelearning_big_data
A Pytorch-based toolbox for semi-supervised learning.
Code: https://github.com/torchssl/torchssl
Paper: https://arxiv.org/abs/2205.07246v1
Logs and weights: https://onedrive.live.com/?authkey=%21AJ%2DwKMa%2DENcbk1s&id=AF426F3217F6565A%213488&cid=AF426F3217F6565A
@ai_machinelearning_big_data
👍14🔥1
RankGen - Improving Text Generation with Large Ranking Models
RankGen is a 1.2 billion encoder model which maps prefixes and generations from any language model (in continutation to the prefix) to a shared vector space.
Github: https://github.com/martiansideofthemoon/rankgen
Paper: https://arxiv.org/abs/2205.09726
Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
RankGen is a 1.2 billion encoder model which maps prefixes and generations from any language model (in continutation to the prefix) to a shared vector space.
Github: https://github.com/martiansideofthemoon/rankgen
Paper: https://arxiv.org/abs/2205.09726
Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
👍9
This media is not supported in your browser
VIEW IN TELEGRAM
🧍♂ AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars
Github: https://github.com/hongfz16/avatarclip
Colab demo: https://colab.research.google.com/drive/1dfaecX7xF3nP6fyXc8XBljV5QY1lc1TR?usp=sharing
Paper: https://arxiv.org/abs/2205.08535v1
Dataset: https://paperswithcode.com/dataset/amass
Instructions: https://github.com/hongfz16/AvatarCLIP/blob/main/Avatar2FBX/README.md
@ai_machinelearning_big_data
Github: https://github.com/hongfz16/avatarclip
Colab demo: https://colab.research.google.com/drive/1dfaecX7xF3nP6fyXc8XBljV5QY1lc1TR?usp=sharing
Paper: https://arxiv.org/abs/2205.08535v1
Dataset: https://paperswithcode.com/dataset/amass
Instructions: https://github.com/hongfz16/AvatarCLIP/blob/main/Avatar2FBX/README.md
@ai_machinelearning_big_data
👍16🤬1
This media is not supported in your browser
VIEW IN TELEGRAM
☠️ PYSKL: Towards Good Practices for Skeleton Action Recognition
Skeleton-based action recognition
Github: https://github.com/kennymckormick/pyskl
Paper: https://arxiv.org/abs/2205.09443v1
Dataset: https://paperswithcode.com/dataset/finegym
@ai_machinelearning_big_data
Skeleton-based action recognition
Github: https://github.com/kennymckormick/pyskl
Paper: https://arxiv.org/abs/2205.09443v1
Dataset: https://paperswithcode.com/dataset/finegym
@ai_machinelearning_big_data
👍27😱2
The Complete Collection of Data Science Books – Part 1
https://www.kdnuggets.com/2022/05/complete-collection-data-science-books-part-1.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2022/05/complete-collection-data-science-books-part-1.html
@ai_machinelearning_big_data
👍19
📝 Automated Crossword Solving
Pretrained models, precomputed FAISS embeddings, and a crossword clue-answer dataset.
Github: https://github.com/albertkx/berkeley-crossword-solver
Paper: https://arxiv.org/abs/2205.09665v1
Dataset: https://www.xwordinfo.com/JSON/
@ai_machinelearning_big_data
Pretrained models, precomputed FAISS embeddings, and a crossword clue-answer dataset.
Github: https://github.com/albertkx/berkeley-crossword-solver
Paper: https://arxiv.org/abs/2205.09665v1
Dataset: https://www.xwordinfo.com/JSON/
@ai_machinelearning_big_data
👍13❤3