🧊 Focal Sparse Convolutional Networks for 3D Object Detection (CVPR 2022, Oral)
Github: https://github.com/dvlab-research/focalsconv
Paper: https://arxiv.org/abs/2204.12463
Dataset: https://paperswithcode.com/dataset/nuscenes
@ai_machinelearning_big_data
Github: https://github.com/dvlab-research/focalsconv
Paper: https://arxiv.org/abs/2204.12463
Dataset: https://paperswithcode.com/dataset/nuscenes
@ai_machinelearning_big_data
🔥4👍2❤1🎉1
Media is too big
VIEW IN TELEGRAM
🚗 MMRotate: A Rotated Object Detection Benchmark using Pytorch
Github: https://github.com/open-mmlab/mmrotate
Documentation: https://mmrotate.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2204.13317v1
Dataset: https://paperswithcode.com/dataset/dota
@ai_machinelearning_big_data
Github: https://github.com/open-mmlab/mmrotate
Documentation: https://mmrotate.readthedocs.io/en/latest/
Paper: https://arxiv.org/abs/2204.13317v1
Dataset: https://paperswithcode.com/dataset/dota
@ai_machinelearning_big_data
❤8👍3🔥1🎉1
🔝 OPT (Open Pre-trained Transformers) is a family of NLP models trained on billions of tokens of text obtained from the internet.
175B GPT-3
Github: https://github.com/facebookresearch/metaseq
Instructions: https://github.com/facebookresearch/metaseq/blob/main/docs/setup.md
Paper: https://arxiv.org/abs/2205.01068v2
Dataset: https://paperswithcode.com/dataset/superglue
@ai_machinelearning_big_data
175B GPT-3
Github: https://github.com/facebookresearch/metaseq
Instructions: https://github.com/facebookresearch/metaseq/blob/main/docs/setup.md
Paper: https://arxiv.org/abs/2205.01068v2
Dataset: https://paperswithcode.com/dataset/superglue
@ai_machinelearning_big_data
👍9❤2🔥2👎1👏1
⚡️ EmotionFlow: Capture the Dialogue Level Emotion Transitions
Code: https://github.com/fpcsong/emotionflow
Paper: https://arxiv.org/abs/2204.10298v1
Dataset: https://paperswithcode.com/dataset/meld
@ai_machinelearning_big_data
Code: https://github.com/fpcsong/emotionflow
Paper: https://arxiv.org/abs/2204.10298v1
Dataset: https://paperswithcode.com/dataset/meld
@ai_machinelearning_big_data
👍3👎3
💬 Textual Entailment for Event Argument Extraction: Zero- and Few-Shot with Multi-Source Learning
Github: https://github.com/osainz59/Ask2Transformers
Instructions: https://github.com/facebookresearch/metaseq/blob/main/docs/setup.md
Paper: https://arxiv.org/abs/2205.01376v1
Dataset: https://paperswithcode.com/dataset/snli
@ai_machinelearning_big_data
Github: https://github.com/osainz59/Ask2Transformers
Instructions: https://github.com/facebookresearch/metaseq/blob/main/docs/setup.md
Paper: https://arxiv.org/abs/2205.01376v1
Dataset: https://paperswithcode.com/dataset/snli
@ai_machinelearning_big_data
👍7❤3🔥2
📌 Список потрясающих фреймворков, библиотек и программного обеспечения для машинного обучения (по языкам)
Статья
@ai_machinelearning_big_data
Статья
@ai_machinelearning_big_data
👍15👎4
↘️ PyRDF2Vec: A Python Implementation and Extension of RDF2Vec
Create a 2D feature matrix from a Knowledge Graph for downstream ML tasks.
Github: https://github.com/IBCNServices/pyRDF2Vec
RDF2Vec: http://rdf2vec.org/
Paper: https://arxiv.org/abs/2205.02283v1
Examples: https://github.com/IBCNServices/pyRDF2Vec/tree/main/examples
How to Create Representations of Entities in a Knowledge Graph
@ai_machinelearning_big_data
Create a 2D feature matrix from a Knowledge Graph for downstream ML tasks.
Github: https://github.com/IBCNServices/pyRDF2Vec
RDF2Vec: http://rdf2vec.org/
Paper: https://arxiv.org/abs/2205.02283v1
Examples: https://github.com/IBCNServices/pyRDF2Vec/tree/main/examples
How to Create Representations of Entities in a Knowledge Graph
@ai_machinelearning_big_data
👍9❤4🔥1
Centroid Initialization Methods for k-means Clustering
https://www.kdnuggets.com/2020/06/centroid-initialization-k-means-clustering.html
@ai_machinelearning_big_data
https://www.kdnuggets.com/2020/06/centroid-initialization-k-means-clustering.html
@ai_machinelearning_big_data
👍10
This media is not supported in your browser
VIEW IN TELEGRAM
🪄 Language Models Can See: Plugging Visual Controls in Text Generation
Github: https://github.com/yxuansu/magic
Paper: https://arxiv.org/abs/2205.02655v1
Dataset: https://paperswithcode.com/dataset/coco
Contrastive Framework for Neural Text Generation: https://github.com/yxuansu/simctg
Colab: https://colab.research.google.com/drive/19lyyMXDRNr-Op8vwUOiRmbhMxI_s3rwW?usp=sharing
@ai_machinelearning_big_data
Github: https://github.com/yxuansu/magic
Paper: https://arxiv.org/abs/2205.02655v1
Dataset: https://paperswithcode.com/dataset/coco
Contrastive Framework for Neural Text Generation: https://github.com/yxuansu/simctg
Colab: https://colab.research.google.com/drive/19lyyMXDRNr-Op8vwUOiRmbhMxI_s3rwW?usp=sharing
@ai_machinelearning_big_data
👍9🔥2❤1🎉1
📝 EasyNLP is an easy-to-use NLP development and application toolkit in PyTorch
$ pip install pai-easynlp.
Github: https://github.com/alibaba/EasyNLP
Paper: https://arxiv.org/abs/2205.03071v1
Dataset: https://paperswithcode.com/dataset/natural-questions
Documentation: https://www.yuque.com/easyx/easynlp/kkhkai
@ai_machinelearning_big_data
$ pip install pai-easynlp.
Github: https://github.com/alibaba/EasyNLP
Paper: https://arxiv.org/abs/2205.03071v1
Dataset: https://paperswithcode.com/dataset/natural-questions
Documentation: https://www.yuque.com/easyx/easynlp/kkhkai
@ai_machinelearning_big_data
👍21
🗯 DeepFilterNet
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.
Github: https://github.com/rikorose/deepfilternet
Paper: https://arxiv.org/abs/2205.05474v1
Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2
@ai_machinelearning_big_data
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) using on Deep Filtering.
Github: https://github.com/rikorose/deepfilternet
Paper: https://arxiv.org/abs/2205.05474v1
Demo: https://huggingface.co/spaces/hshr/DeepFilterNet2
@ai_machinelearning_big_data
👍10🔥4
KG-SP: Knowledge Guided Simple Primitives for Open World Compositional Zero-Shot Learning
Github: https://github.com/explainableml/kg-sp
Paper: https://arxiv.org/abs/2205.06784v1
Dataset: https://paperswithcode.com/dataset/conceptnet
@ArtificialIntelligencedl
Github: https://github.com/explainableml/kg-sp
Paper: https://arxiv.org/abs/2205.06784v1
Dataset: https://paperswithcode.com/dataset/conceptnet
@ArtificialIntelligencedl
👍12👎3
🦉 OWL-ViT: Open-World Object Detection with Vision Transformers
OWL-ViT is an open-vocabulary object detector.
Github: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
Paper: https://arxiv.org/abs/2205.06230
Colab: https://colab.research.google.com/github/google-research/scenic/blob/main/scenic/projects/owl_vit/notebooks/OWL_ViT_minimal_example.ipynb
Dataset: https://paperswithcode.com/dataset/objects365
@ai_machinelearning_big_data
OWL-ViT is an open-vocabulary object detector.
Github: https://github.com/google-research/scenic/tree/main/scenic/projects/owl_vit
Paper: https://arxiv.org/abs/2205.06230
Colab: https://colab.research.google.com/github/google-research/scenic/blob/main/scenic/projects/owl_vit/notebooks/OWL_ViT_minimal_example.ipynb
Dataset: https://paperswithcode.com/dataset/objects365
@ai_machinelearning_big_data
👍12🔥3
AdaVAE: Exploring Adaptive GPT-2s in Variational Auto-Encoders for Language Modeling
First VAE framework empowered with adaptive GPT-2s (AdaVAE).
Github: https://github.com/ImKeTT/adavae
Paper: https://arxiv.org/abs/2205.05862v1
Task: https://paperswithcode.com/task/representation-learning
First VAE framework empowered with adaptive GPT-2s (AdaVAE).
Github: https://github.com/ImKeTT/adavae
Paper: https://arxiv.org/abs/2205.05862v1
Task: https://paperswithcode.com/task/representation-learning
👍14👎1
Efficient and performance-portable vector software
CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.
Code: https://github.com/google/highway
Paper: https://arxiv.org/abs/2205.05982v1
Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md
@ai_machinelearning_big_data
CPUs provide SIMD/vector instructions that apply the same operation to multiple data items. This can reduce energy usage e.g. fivefold because fewer instructions are executed. We also often see 5-10x speedups.
Code: https://github.com/google/highway
Paper: https://arxiv.org/abs/2205.05982v1
Testing: https://github.com/google/highway/blob/master/g3doc/release_testing_process.md
@ai_machinelearning_big_data
👍14
[RK-Net]Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization
Github: https://github.com/AggMan96/RK-Net
Paper: https://zhunzhong.site/paper/RK_Net.pdf
Dataset: https://paperswithcode.com/dataset/university-1652
@ai_machinelearning_big_data
Github: https://github.com/AggMan96/RK-Net
Paper: https://zhunzhong.site/paper/RK_Net.pdf
Dataset: https://paperswithcode.com/dataset/university-1652
@ai_machinelearning_big_data
👍10👎3
Group R-CNN for Point-based Weakly Semi-supervised Object Detection
Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.
Code: https://github.com/jshilong/grouprcnn
Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation
Paper: https://arxiv.org/abs/2205.05920v1
Task: https://paperswithcode.com/task/object-detection
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
Instance-aware representation learning which consists of instance-aware feature enhancement and instance-aware parameter generation to overcome this issue.
Code: https://github.com/jshilong/grouprcnn
Installation: https://mmdetection.readthedocs.io/en/v2.18.1/get_started.html#installation
Paper: https://arxiv.org/abs/2205.05920v1
Task: https://paperswithcode.com/task/object-detection
Dataset: https://paperswithcode.com/dataset/coco
@ai_machinelearning_big_data
👍12❤1🔥1
Towards Unified Keyframe Propagation Models
A two-stream approach, where high-frequency features interact locally and low-frequency features interact globally.
Github: https://github.com/runwayml/guided-inpainting
Paper: https://arxiv.org/abs/2205.09731v1
Dataset: https://paperswithcode.com/dataset/places
@ai_machinelearning_big_data
A two-stream approach, where high-frequency features interact locally and low-frequency features interact globally.
Github: https://github.com/runwayml/guided-inpainting
Paper: https://arxiv.org/abs/2205.09731v1
Dataset: https://paperswithcode.com/dataset/places
@ai_machinelearning_big_data
👀 Sockeye
Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch.
Code: https://github.com/awslabs/sockeye
Tutorial: https://github.com/awslabs/sockeye/blob/main/docs/tutorials/wmt_large.md
Paper: https://arxiv.org/abs/2205.06618v1
@ai_machinelearning_big_data
Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch.
Code: https://github.com/awslabs/sockeye
Tutorial: https://github.com/awslabs/sockeye/blob/main/docs/tutorials/wmt_large.md
Paper: https://arxiv.org/abs/2205.06618v1
@ai_machinelearning_big_data
👍13❤2🔥2
🖇 A graph-transformer for whole slide image classification
Graph-Transformer (GT) that fuses a graph-based representation of an WSI and a vision transformer for processing pathology images.
Github: https://github.com/vkola-lab/tmi2022
Paper: https://arxiv.org/abs/2205.09671v1
Dataset: https://paperswithcode.com/dataset/imagenet
Graph-Transformer (GT) that fuses a graph-based representation of an WSI and a vision transformer for processing pathology images.
Github: https://github.com/vkola-lab/tmi2022
Paper: https://arxiv.org/abs/2205.09671v1
Dataset: https://paperswithcode.com/dataset/imagenet
👍11👎3