Machinelearning – Telegram
383K subscribers
4.44K photos
853 videos
17 files
4.88K links
Погружаемся в машинное обучение и Data Science

Показываем как запускать любые LLm на пальцах.

По всем вопросам - @haarrp

@itchannels_telegram -🔥best channels

Реестр РКН: clck.ru/3Fmqri
Download Telegram
This media is not supported in your browser
VIEW IN TELEGRAM
⚡️🧑‍💻 Сберовский ИИ GigaChat вышел в мир

Нейросеть интегрировали с голосовым ассистентом Салют — теперь он доступен в умных колонках SberBoom и запускается голосовой командой «Салют, включи GigaChat».

Тем, у кого пока нет колонок, воспользоваться Гигачатом можно по ссылке.
👍50🥱87🖕5🙈4🔥3🙉3🙊3
🧑‍💻DeciCoder: A new open-source LLM, specialized for generating code in Python, Java, and Javanoscript.

🚀Новый LLM с открытым исходным кодом, специализированный для генерации кода на языках Python, Java и Javanoscript.

Авторегрессивная языковая модель, отличающаяся исключительной производительностью и эффективным использованием памяти.

- parameters: 1 B
- dataset: 'The Stack' dataset
- supports: Python, Javanoscript, Java
- context: 2048 tokens

Model
Colab
Dataset

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍205😁4🔥1
✔️ DeDoDe: Detect, Don't Describe -- Describe, Don't Detect for Local Feature Matching

Новая мощная система распознавания, описание и сопоставления изображений.
3d объектов .

🖥 Github: https://github.com/parskatt/dedode

☑️ TensorRT: https://github.com/fabio-sim/DeDoDe-ONNX-TensorRT

📕 Paper: https://arxiv.org/abs/2308.08479

⭐️ Demos: https://github.com/Parskatt/DeDoDe/blob/main/demo

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥43👏1
29🖕18🥰10🔥5👍1🙉1
Please open Telegram to view this post
VIEW IN TELEGRAM
👍93🔥2
Легкий способ получать свежие обновлении и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:


Машинное обучение: @machinelearning_ru
Go: @Golang_google
C#: @csharp_ci
Базы данных: @sqlhub
Python: @pythonl
C/C++/: @cpluspluc
Data Science: @data_analysis_ml
Devops: @devOPSitsec
Rust: @rust_code
Javanoscript: @javanoscriptv
React: @react_tg
PHP: @phpshka
Docker: @docker
Android: @android_its
Мобильная разработка: @mobdevelop
Linux: linuxacademy
Big Data: t.me/bigdatai
Хакинг: @linuxkalii
Java:@javatg
Собеседования: @machinelearning_interview


💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy

🔥ИТ-Мемы: t.me/memes_prog

🇬🇧Английский: @english_forprogrammers

📕Ит-книги https://news.1rj.ru/str/addlist/BkskQciUW_FhNjEy
7🖕4👍3🔥2🥰1🤨1😡1
This media is not supported in your browser
VIEW IN TELEGRAM
👁 MeViS: A Large-scale Benchmark for Video Segmentation with Motion Expressions

Новый крупномасштабный датасет MeViS для сегментации движущихся объектов на основе текстового ввода.

🖥 Github: https://github.com/henghuiding/MeViS

☑️ Evaluation Server: https://codalab.lisn.upsaclay.fr/competitions/15094

📕 Paper: https://arxiv.org/abs/2308.08479

⭐️ Dataset: https://codalab.lisn.upsaclay.fr/competitions/15094

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍134🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
💨CoDeF: Content Deformation Fields for Temporally Consistent Video Processing

Новый фреймворк для переноса создания любого стиля на видео.

🖥 Github: https://github.com/qiuyu96/codef

☑️ Project: https://qiuyu96.github.io/CoDeF/

📕 Paper: https://arxiv.org/abs/2308.07926

⭐️ Demo: https://ezioby.github.io/CoDeF_Demo/

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥73
🪄WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions

Model outperforms ChatGPT-3.5, Claude Instant-1, PaLM-2 and Minerva on GSM8k, simultaneously surpasses Text-davinci-002, PaLM-1 and GPT-3 on MATH.

Фреймворк WizardMath, который расширяет способности Llama-2 к математическому мышлению, применяя метод Reinforcement Learning from Evol-Instruct Feedback (RLEIF) к области математики.

WizardMath с существенным отрывом превосходит все остальные LLM с открытым исходным кодом в решение мат. задач.

🖥 Github: https://github.com/nlpxucan/wizardlm

📕 Paper: https://arxiv.org/abs/2308.09583v1

🤗 HF: https://huggingface.co/WizardLM

☑️ Dataset: https://paperswithcode.com/dataset/gsm8k

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥32
☄️Dataset Quantization

DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training.

Квантование наборов данных (DQ) - новая схема сжатия больших наборов данных в небольшие сабсеты, которые могут быть использованы для обучения любых нейросетевых архитектур.

git clone https://github.com/vimar-gu/DQ.git
cd DQ


🖥 Github: https://github.com/magic-research/dataset_quantization

📕 Paper: https://arxiv.org/abs/2308.10524v1

☑️ Dataset: https://paperswithcode.com/dataset/gsm8k

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥53
📢SeamlessM4T

SeamlessM4T is designed to provide high quality translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.

Только что FB выпустили самый мощный нейро-переводчик на сегодняшний день. SeamlessM4T понимает более 100 языков и умеет осуществлять все типы переводов: из текста в текст, из речи в текст, из текста в речь и даже из речи в речь.

Github
Article
Demo
Hugging face

ai_machinelearning_big_data
👍306🥰2
🚀 Introducing IDEFICS: An Open Reproduction of State-of-the-Art Visual Language Model

An open-access visual language model. IDEFICS is based on Flamingo, a state-of-the-art visual language model initially developed by DeepMind, which has not been released publicly.

IDEFICS - это модель с открытым доступом визуального языка , разработанной компанией Deepmind. Как и GPT-4, мультимодальная модель принимает на вход произвольные последовательности изображений и текстов и выдает на выходе текст. IDEFICS построена исключительно на основе общедоступных данных и моделей.

Модель может отвечать на вопросы об изображениях, описывать визуальное содержимое, создавать истории на основе нескольких изображений или просто вести себя как чистая языковая модель.

☑️ Model: https://huggingface.co/HuggingFaceM4/idefics-80b-instruct

🖥 Github: https://github.com/huggingface/blog/blob/main/idefics.md

⭐️ Demo: https://huggingface.co/spaces/HuggingFaceM4/idefics_playground

🤗 HF: https://huggingface.co/WizardLM

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
11👍5🔥3
💡 Sentence-Level Multimodal and Language-Agnostic Representations

SONAR, a new multilingual and multimodal fixed-size sentence embedding space.

Новый Текстовый кодер-декодер от Meta, охватывающий 200 языков, который существенно превосходит существующие модели.

🖥 Github: https://github.com/facebookresearch/sonar

📕 Paper: https://arxiv.org/pdf/2308.11466v1.pdf

⭐️ Demo: https://github.com/facebookresearch/sonar#usage

☑️ Dataset: https://paperswithcode.com/dataset/common-voice

ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥42🤬1