This media is not supported in your browser
VIEW IN TELEGRAM
⚡️🧑💻 Сберовский ИИ GigaChat вышел в мир
Нейросеть интегрировали с голосовым ассистентом Салют — теперь он доступен в умных колонках SberBoom и запускается голосовой командой «Салют, включи GigaChat».
Тем, у кого пока нет колонок, воспользоваться Гигачатом можно по ссылке.
Нейросеть интегрировали с голосовым ассистентом Салют — теперь он доступен в умных колонках SberBoom и запускается голосовой командой «Салют, включи GigaChat».
Тем, у кого пока нет колонок, воспользоваться Гигачатом можно по ссылке.
👍50🥱8❤7🖕5🙈4🔥3🙉3🙊3
🚀Новый LLM с открытым исходным кодом, специализированный для генерации кода на языках Python, Java и Javanoscript.
Авторегрессивная языковая модель, отличающаяся исключительной производительностью и эффективным использованием памяти.
- parameters: 1 B
- dataset: 'The Stack' dataset
- supports: Python, Javanoscript, Java
- context: 2048 tokens
▪Model
▪Colab
▪Dataset
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍20❤5😁4🔥1
Новая мощная система распознавания, описание и сопоставления изображений.
3d объектов .
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍19🔥4❤3👏1
FLAIR: A Foundation LAnguage Image model of the Retina
🖥 Github: https://github.com/jusiro/flair
📕 Paper: https://arxiv.org/pdf/2308.07898v1.pdf
🔥 Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
🔥 Dataset: https://paperswithcode.com/dataset/imagenet
@ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍9❤3🔥2
⚡Легкий способ получать свежие обновлении и следить за трендами в разработке на вашем языке. Находите свой стек и подписывайтесь:
Машинное обучение: @machinelearning_ru
Go: @Golang_google
C#: @csharp_ci
Базы данных: @sqlhub
Python: @pythonl
C/C++/: @cpluspluc
Data Science: @data_analysis_ml
Devops: @devOPSitsec
Rust: @rust_code
Javanoscript: @javanoscriptv
React: @react_tg
PHP: @phpshka
Docker: @docker
Android: @android_its
Мобильная разработка: @mobdevelop
Linux: linuxacademy
Big Data: t.me/bigdatai
Хакинг: @linuxkalii
Java:@javatg
Собеседования: @machinelearning_interview
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
🔥ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: @english_forprogrammers
📕Ит-книги https://news.1rj.ru/str/addlist/BkskQciUW_FhNjEy
Машинное обучение: @machinelearning_ru
Go: @Golang_google
C#: @csharp_ci
Базы данных: @sqlhub
Python: @pythonl
C/C++/: @cpluspluc
Data Science: @data_analysis_ml
Devops: @devOPSitsec
Rust: @rust_code
Javanoscript: @javanoscriptv
React: @react_tg
PHP: @phpshka
Docker: @docker
Android: @android_its
Мобильная разработка: @mobdevelop
Linux: linuxacademy
Big Data: t.me/bigdatai
Хакинг: @linuxkalii
Java:@javatg
Собеседования: @machinelearning_interview
💼 Папка с вакансиями: t.me/addlist/_zyy_jQ_QUsyM2Vi
Папка Go разработчика: t.me/addlist/MUtJEeJSxeY2YTFi
Папка Python разработчика: t.me/addlist/eEPya-HF6mkxMGIy
🔥ИТ-Мемы: t.me/memes_prog
🇬🇧Английский: @english_forprogrammers
📕Ит-книги https://news.1rj.ru/str/addlist/BkskQciUW_FhNjEy
❤7🖕4👍3🔥2🥰1🤨1😡1
This media is not supported in your browser
VIEW IN TELEGRAM
Новый крупномасштабный датасет MeViS для сегментации движущихся объектов на основе текстового ввода.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13❤4🔥4
This media is not supported in your browser
VIEW IN TELEGRAM
Новый фреймворк для переноса создания любого стиля на видео.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
👍18🔥7❤3
🪄WizardLM: Empowering Large Pre-Trained Language Models to Follow Complex Instructions
Model outperforms ChatGPT-3.5, Claude Instant-1, PaLM-2 and Minerva on GSM8k, simultaneously surpasses Text-davinci-002, PaLM-1 and GPT-3 on MATH.
Фреймворк WizardMath, который расширяет способности Llama-2 к математическому мышлению, применяя метод Reinforcement Learning from Evol-Instruct Feedback (RLEIF) к области математики.
WizardMath с существенным отрывом превосходит все остальные LLM с открытым исходным кодом в решение мат. задач.
🖥 Github: https://github.com/nlpxucan/wizardlm
📕 Paper: https://arxiv.org/abs/2308.09583v1
🤗 HF: https://huggingface.co/WizardLM
☑️ Dataset: https://paperswithcode.com/dataset/gsm8k
ai_machinelearning_big_data
Model outperforms ChatGPT-3.5, Claude Instant-1, PaLM-2 and Minerva on GSM8k, simultaneously surpasses Text-davinci-002, PaLM-1 and GPT-3 on MATH.
Фреймворк WizardMath, который расширяет способности Llama-2 к математическому мышлению, применяя метод Reinforcement Learning from Evol-Instruct Feedback (RLEIF) к области математики.
WizardMath с существенным отрывом превосходит все остальные LLM с открытым исходным кодом в решение мат. задач.
🤗 HF: https://huggingface.co/WizardLM
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍13🔥3❤2
☄️Dataset Quantization
DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training.
Квантование наборов данных (DQ) - новая схема сжатия больших наборов данных в небольшие сабсеты, которые могут быть использованы для обучения любых нейросетевых архитектур.
🖥 Github: https://github.com/magic-research/dataset_quantization
📕 Paper: https://arxiv.org/abs/2308.10524v1
☑️ Dataset: https://paperswithcode.com/dataset/gsm8k
ai_machinelearning_big_data
DQ is able to generate condensed small datasets for training unseen network architectures with state-of-the-art compression ratios for lossless model training.
Квантование наборов данных (DQ) - новая схема сжатия больших наборов данных в небольшие сабсеты, которые могут быть использованы для обучения любых нейросетевых архитектур.
git clone https://github.com/vimar-gu/DQ.git
cd DQai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍15🔥5❤3
⚡📢SeamlessM4T
SeamlessM4T is designed to provide high quality translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
Только что FB выпустили самый мощный нейро-переводчик на сегодняшний день. SeamlessM4T понимает более 100 языков и умеет осуществлять все типы переводов: из текста в текст, из речи в текст, из текста в речь и даже из речи в речь.
▪Github
▪Article
▪Demo
▪Hugging face
ai_machinelearning_big_data
SeamlessM4T is designed to provide high quality translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.
Только что FB выпустили самый мощный нейро-переводчик на сегодняшний день. SeamlessM4T понимает более 100 языков и умеет осуществлять все типы переводов: из текста в текст, из речи в текст, из текста в речь и даже из речи в речь.
▪Github
▪Article
▪Demo
▪Hugging face
ai_machinelearning_big_data
👍30❤6🥰2
🚀 Introducing IDEFICS: An Open Reproduction of State-of-the-Art Visual Language Model
An open-access visual language model. IDEFICS is based on Flamingo, a state-of-the-art visual language model initially developed by DeepMind, which has not been released publicly.
IDEFICS - это модель с открытым доступом визуального языка , разработанной компанией Deepmind. Как и GPT-4, мультимодальная модель принимает на вход произвольные последовательности изображений и текстов и выдает на выходе текст. IDEFICS построена исключительно на основе общедоступных данных и моделей.
Модель может отвечать на вопросы об изображениях, описывать визуальное содержимое, создавать истории на основе нескольких изображений или просто вести себя как чистая языковая модель.
☑️ Model: https://huggingface.co/HuggingFaceM4/idefics-80b-instruct
🖥 Github: https://github.com/huggingface/blog/blob/main/idefics.md
⭐️ Demo: https://huggingface.co/spaces/HuggingFaceM4/idefics_playground
🤗 HF: https://huggingface.co/WizardLM
ai_machinelearning_big_data
An open-access visual language model. IDEFICS is based on Flamingo, a state-of-the-art visual language model initially developed by DeepMind, which has not been released publicly.
IDEFICS - это модель с открытым доступом визуального языка , разработанной компанией Deepmind. Как и GPT-4, мультимодальная модель принимает на вход произвольные последовательности изображений и текстов и выдает на выходе текст. IDEFICS построена исключительно на основе общедоступных данных и моделей.
Модель может отвечать на вопросы об изображениях, описывать визуальное содержимое, создавать истории на основе нескольких изображений или просто вести себя как чистая языковая модель.
🤗 HF: https://huggingface.co/WizardLM
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
❤11👍5🔥3
💡 Sentence-Level Multimodal and Language-Agnostic Representations
SONAR, a new multilingual and multimodal fixed-size sentence embedding space.
Новый Текстовый кодер-декодер от Meta, охватывающий 200 языков, который существенно превосходит существующие модели.
🖥 Github: https://github.com/facebookresearch/sonar
📕 Paper: https://arxiv.org/pdf/2308.11466v1.pdf
⭐️ Demo: https://github.com/facebookresearch/sonar#usage
☑️ Dataset: https://paperswithcode.com/dataset/common-voice
ai_machinelearning_big_data
SONAR, a new multilingual and multimodal fixed-size sentence embedding space.
Новый Текстовый кодер-декодер от Meta, охватывающий 200 языков, который существенно превосходит существующие модели.
ai_machinelearning_big_data
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
👍12🔥4❤2🤬1