Love. Death. Transformers. – Telegram
Love. Death. Transformers.
22.5K subscribers
4.26K photos
499 videos
76 files
2.78K links
❤️☠️🤗

Указанные действия не являются ресерчем, поскольку:
а) Мы не ученые;
б) Оно работает.
@transformerslovedeatch по всем вопросам
Все ситуации вымышлены, любые совпадения с реальности плот вашей фантазии.
Download Telegram
🔥571233🤡2🤔1
Действительно призошла утечка, я в ахуе, гпт4 level waifus goes brr.

А кто то знает способы конвертации ггуф в fp16? Мне для друга.

деквант версия
cайт
😁49🔥2
Forwarded from AINL Conference
AINL_2024.pdf
496.7 KB
Dear colleagues, we are happy to announce AINL 2024! It will be held at Almaty, Kazakhstan, April 24-25, 2024. Please find first call for papers attached!
👍18🤮2🔥11
Forwarded from Derp Learning
Обнаружена серьезная проблема в VAE StableDiffusion 1.x, 2.x и других, использовавших его латентное пространство.

Суть такова: в идеале, латентное представление должно быть пространственно связано с кодируемой картинкой. То есть пиксели в углу картинки влияют только на тот же угловой кусок латентного вектора.
Но из-за ошибки при обучении KL-F8 VAE, информация обо всей картинке протекает через некоторые локальные пиксели.
То есть если вы измените пару латентных "пикселей" в том самом неудачном месте, вся картинка изменится - например, станет ярче или менее контрастнее. (рис.1) При этом если вы захотите привести картинку по яркости и контрасту к исходной, получите те самые артефакты VAE с "прожогами".
Поэтому уже сама диффузионная модель при обучении в латентном пространстве бракованного VAE учится обходить эту проблему, что приводит этим самым прожогам, и, вероятно, к менее эффективному использованию параметров.

SDXL этой проблеме не подвержен, так как там VAE учили уже нормально, а вот DALLE3, опенсорснутый VAE которого совместим с SD 1.x, страдает теми же прожогами.
Так что если будете учить свою foundation model, учите с нуля вместе с VAE, либо берите SDXL :D

подробнее

@derplearning
3610👍4🤔432
Неожиданно релизнулась llava1.6, теперь картинки до 1344*336, 30В+ модели и перфоманс близкий к gpt4v.

blogpost
Демка llava.hliu.cc
🔥39👍1🤔1🤡11
https://ium.mccme.ru/s24/s24.html

на следующей неделе начинается весенний семестр в НМУ; подробности — по ссылке

в т.ч. для 1 курса читают топологию — К.В.Логинов, алгебру — А.И.Ильин, анализ — И.В.Вьюгин

для 2 курса теорию вероятностей — С.В.Шапошников, топологию — А.Д.Рябичев и Ф.Е.Вылегжанин, дифф. геометрию — Г.И.Шарыгин
🔥2042
MobileDiffusion

Очень странный крутой релиз от гугл:

- latent (скоро два года будет, в Гугле наконец перестали обучать каскады)
- unet с трансформер блоками и последовательными свертками вместо обычных блоков
- swish вместо glu
- всего 150м датасет
- 512 разрешение картинки
- ufogen single step generation, лень читать, мб завтра
- fine-tune soft max into relu 🤩


Папир
Please open Telegram to view this post
VIEW IN TELEGRAM
299👍1🤔1
Админа не держат в заложниках.
7124🤡75👍1🤔1
Новые твиты маска? Эм нуу.....
6610🔥64🤮4😁2
Forwarded from ️LazySquare️Official
Media is too big
VIEW IN TELEGRAM
THE A.I.//И.И.
A little up-to-date agenda wouldn't hurt. All coincidences with historical characters are, as usual, accidental. The 7 deadly sins are also included///Немного актуальной повестки не помешает пожалуй. Все совпадения с историческими персонажами, как обычно, случайны. 7 смертных грехов также прилагаются
👍35🤮14🔥21🤔11
Spoiler: can(t).
😁233🤡1
Тут тихо выложили ft SDV xt, теперь больше кадров и должно быть больше движения.

модель лежит тут
👍15👏1
Компиляция нескольких постов про то, что читать про ML/NLP/LLM:

Обучающие материалы 🗒
- https://habr.com/ru/articles/774844/
- https://lena-voita.github.io/nlp_course.html
- https://web.stanford.edu/~jurafsky/slp3/ed3book.pdf
- https://www.youtube.com/watch?v=rmVRLeJRkl4&list=PLoROMvodv4rMFqRtEuo6SGjY4XbRIVRd4
- https://huggingface.co/docs/transformers/perf_train_gpu_one

Блоги 🍿
- https://huggingface.co/blog/
- https://blog.eleuther.ai/
- https://lilianweng.github.io/
- https://oobabooga.github.io/blog/
- https://kipp.ly/
- https://mlu-explain.github.io/
- https://yaofu.notion.site/Yao-Fu-s-Blog-b536c3d6912149a395931f1e871370db

Прикладные курсы 👴
- https://github.com/yandexdataschool/nlp_course
- https://github.com/DanAnastasyev/DeepNLP-Course
(Я давно не проходил вообще никакие курсы, если есть что-то новое и хорошее - пишите!)

Каналы 🚫
- https://news.1rj.ru/str/gonzo_ML
- https://news.1rj.ru/str/izolenta_mebiusa
- https://news.1rj.ru/str/tech_priestess
- https://news.1rj.ru/str/rybolos_channel
- https://news.1rj.ru/str/j_links
- https://news.1rj.ru/str/lovedeathtransformers
- https://news.1rj.ru/str/seeallochnaya
- https://news.1rj.ru/str/doomgrad
- https://news.1rj.ru/str/nadlskom
- https://news.1rj.ru/str/dlinnlp
(Забыл добавить вас? Напишите в личку, список составлялся по тем каналам, что я сам читаю)

Чаты 😁
- https://news.1rj.ru/str/betterdatacommunity
- https://news.1rj.ru/str/natural_language_processing
- https://news.1rj.ru/str/LLM_RNN_RWKV
- https://news.1rj.ru/str/ldt_chat

Основные статьи 😘
- Word2Vec: Mikolov et al., Efficient Estimation of Word Representations in Vector Space https://arxiv.org/pdf/1301.3781.pdf
- FastText: Bojanowski et al., Enriching Word Vectors with Subword Information https://arxiv.org/pdf/1607.04606.pdf
- Attention: Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473
- Transformers: Vaswani et al., Attention Is All You Need https://arxiv.org/abs/1706.03762
- BERT: Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding https://arxiv.org/abs/1810.0480
- GPT-2, Radford et al., Language Models are Unsupervised Multitask Learners https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
- GPT-3, Brown et al, Language Models are Few-Shot Learners https://arxiv.org/abs/2005.14165
- LaBSE, Feng et al., Language-agnostic BERT Sentence Embedding https://arxiv.org/abs/2007.01852
- CLIP, Radford et al., Learning Transferable Visual Models From Natural Language Supervision https://arxiv.org/abs/2103.00020
- RoPE, Su et al., RoFormer: Enhanced Transformer with Rotary Position Embedding https://arxiv.org/abs/2104.09864
- LoRA, Hu et al., LoRA: Low-Rank Adaptation of Large Language Models https://arxiv.org/abs/2106.09685
- InstructGPT, Ouyang et al., Training language models to follow instructions with human feedback https://arxiv.org/abs/2203.02155
- Scaling laws, Hoffmann et al., Training Compute-Optimal Large Language Models https://arxiv.org/abs/2203.15556
- FlashAttention, Dao et al., FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness https://arxiv.org/abs/2205.14135
- NLLB, NLLB team, No Language Left Behind: Scaling Human-Centered Machine Translation https://arxiv.org/abs/2207.04672
- Q8, Dettmers et al., LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale https://arxiv.org/abs/2208.07339
- Self-instruct, Wang et al., Self-Instruct: Aligning Language Models with Self-Generated Instructions https://arxiv.org/abs/2212.10560
- Alpaca, Taori et al., Alpaca: A Strong, Replicable Instruction-Following Model https://crfm.stanford.edu/2023/03/13/alpaca.html
- LLaMA, Touvron, et al., LLaMA: Open and Efficient Foundation Language Models https://arxiv.org/abs/2302.13971
Please open Telegram to view this post
VIEW IN TELEGRAM
23👍12🔥5👎1🤡1