Машинное обучение digest – Telegram
Машинное обучение digest
40 subscribers
1.3K photos
181 videos
652 links
Download Telegram
📌 State of Foundation Models 2025 — краткое изложение отчёта Innovation Endeavors

Венчурный фонд Innovation Endeavors, основанный бывшим CEO Google Эриком Шмидтом, выпустил 126-страничный обзор о состоянии и тенденциях фундаментальных ИИ-моделей в 2025 году.

🟢 2025 — год, когда генеративный ИИ стал по-настоящему массовым.

Каждый восьмой работник на планете использует ИИ-инструменты хотя бы раз в месяц, а 90 % прироста аудитории произошло за последние полгода. Многие «ИИ-приложения» уже приносят индустрии миллиарды долларов в год, охватывая инженерию, дизайн, бухгалтерию, юриспруденцию и другие сферы.

🟠LLM уже обходят людей на сложных тестах.

Современные языковые модели превосходят врачей по целому ряду диагностических задач и решают олимпиадную геометрию лучше, чем 99 % людей.

Самое неожиданное: если дать небольшой модели время подумать, то она может обойти гораздо более крупную – эксперименты показали, что 3B-модель с reasoning-механизмом обойдет 70B-модель.


🟠По всем техническим метрикам масштаб моделей растет экспоненциально.

Производительность, интеллект и окна контекста увеличиваются более чем в 10× каждый год. Например, окна контекста выросли примерно с 8 тысяч до миллиона токенов, а стоимость генерации одного токена на крупных моделях упала почти в 1000 раз за пару лет. Средняя «длительность» задачи, которую модель может завершить сама, удваивается примерно каждые 7 месяцев.

🟠 Эксперты резюмируют: «умные модели сначала думают, потом говорят».

Модели рассуждения, обученные через CoT, дают новый путь к масштабированию и требуют активного посттренинга (RL с reward-моделями). Возможно, скоро именно дообучение станет важнее предобучения.

🟠 Экономика фундаментальных моделей запутана.

Крупнейшие игроки генерируют сотни миллионов выручки, но обучение топ-моделей дороже: LLaMA 4 ≳ $300 млн, GPT-4 ≈ $100 млн, а совокупные расходы OpenAI на обучение и данные достигают ~$3 млрд в год. Новая модель устаревает за три недели — конкуренция так высока, что open-source почти сравнялся с закрытыми платформами.

🟠Структура команд меняется под давлением ИИ.

Выяснилось, что функции «узких» специалистов часто уходят к универсалам с ИИ-ассистентам, а профессии уровня "middle management" вымирают.

🟠 MCP становится стандартом интеграции.

Model Context Protocol соединяет модели с почтой, дизайном, чатами и другими сервисами, а «клиентом» всё чаще выступает другой ИИ: крупные CRM и базы данных само-настраиваются через агентов.

🟠 Железо не отстаёт.

В ИИ-облаках важнее продавать «сырые» GPU-часы, чем комплексное ПО; допвремя на GPU обычно выгоднее оптимизаций. NVIDIA остаётся безусловным лидером: отчёт Q1 зафиксировал 10× генерации токенов на инференсе за год. Появилась волна стартапов с трансформер-чипами — теперь переписывать ИИ-ПО под новое железо оправдано: вычислительные затраты многократно превышают зарплаты инженеров.

🟠 Капитал хлынул в ИИ.

Доля венчура выросла с 10% в 2024 до 50+% в 2025. Компании вроде Anthropic показывают $2 млрд годового дохода с двукратным ростом, но их оценивают в 30 годовых выручек, что вызывает опасения перегрева. Некоторые стартапы привлекают инвестиции ещё на этапе идеи, без MVP, усиливая риски "пузыря".

🟠 Осторожнее с трендами:

75 % ИИ-фото-приложений потеряли основную выручку всего за полгода после пика, напоминая, что не каждое модное направление = устойчивый бизнес, тем более когда модели устаревают с космической скоростью.


Полный отчёт
Видео

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 FLUX.1 Kontext-Dev: текстовое редактирование изображений на новом уровне

Открытая AI-модель, которая позволяет редактировать изображения по текстовой инструкции, сохраняя структуру, стиль и контекст. Всё работает прямо в браузере или локально через Diffusers.

📦 Что умеет FLUX.1 Kontext:

🎨 Менять фон, стиль, объекты на изображении по описанию
🔁 Поддерживать итеративные изменения — можно вносить правки шаг за шагом
🧍‍♂️ Сохранять форму и позу персонажей даже после множественных трансформаций
⚡️ Работает на основе rectified flow transformers и guidance distillation — быстрее и компактнее аналогов

🛠 Как пользоваться:

1. Открыть демо: [huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev](https://huggingface.co/spaces/black-forest-labs/FLUX.1-Kontext-Dev)
2. Загрузить своё изображение
3. Ввести текстовую инструкцию, например:
make it sunset, add snow, make character look older
4. Получить новое изображение — и при необходимости продолжить редактирование

🔌 Интеграции:

• Поддержка Diffusers, ComfyUI, API через bfl.ai и Replicate
• Модель доступна под некоммерческой лицензией
• Подходит для локального запуска на GPU (`torch_dtype=torch.bfloat16`)

🎯 Кому это полезно:

• Дизайнерам и художникам — быстрый визуальный прототипинг
• AI-разработчикам — для создания RAG-интерфейсов с визуальной обратной связью
• Исследователям — для тестирования новых подходов к in-context image editing

🚨 Про безопасность:

Модель включает базовые фильтры генерации. Для продакшена рекомендованы расширенные фильтры (например, Hive) и собственные слои модерации.

📌 Вывод:

FLUX.1 Kontext-Dev — это не просто генератор, а полноценный AI-инструмент для интерактивного и контролируемого редактирования изображений. Идеален для творческих задач, UX-прототипов и изучения мультимодальных AI-сценариев.

#ai #diffusers #imageediting #flux1 #huggingface

📌Код
📌 Веса

@data_analysis_ml
🧊 Millions of Qubits Now Feasible on a Single Chip

Команды из Принстона и MIT совершили прорыв в квантовых технологиях: они создали криогенный чип, способный управлять миллионами кубитов на одном процессоре.

Это решает одну из главных проблем квантовых компьютеров — масштабируемое управление и коммутация при сверхнизких температурах. До сих пор для каждого кубита требовался отдельный провод, что делало масштабирование невозможным. Новый чип кардинально упрощает архитектуру квантовой системы.

📈 Это открытие делает большие квантовые компьютеры не фантазией, а достижимой целью. Возможность разместить миллионы кубитов на одном чипе приближает нас к решению задач, которые невозможно посчитать на классических машинах.

🚀 Прорыв стал возможен благодаря междисциплинарной инженерии: сочетанию квантовой физики, электроники и системного дизайна. Это ещё один шаг к реальной квантовой эре вычислений.
🤖 Redditor автоматизировал создание вирусных рилсов с помощью ИИ-агентов — без единого ручного действия

Пользователь Reddit построил систему на базе ИИ-агентов, которая:
• сама генерирует видео-контент
• планирует публикации
• выкладывает рилсы
• отслеживает метрики
• удаляет только видео низкого качества (это единственный ручной этап)

📈 Результаты за 3 недели:
• 4.4 млн просмотров
• 15 300 переходов в профиль

Алгоритмические фермы вовлечённости уже не теория, а реальность. И это только начало.

⚠️ Добро пожаловать в эпоху, где контент создают и распространяют сами ИИ, а люди лишь подчищают за ними.

👉 Подробнее

#ai #ml #veo3
📌Как Сlaude управлял офисным магазином в Anthropic

Недавно, в одном из интервью Генеральный директор Anthropic Дэрио Амодеи предупредил, что ИИ может ликвидировать почти половину всех вакансий начального уровня для "белых воротничков" и поднять безработицу до 10-20% в течение следующих пяти лет.

Пока Дэрио выражал обеспокоенность по этому поводу, исследователи из его компании проводили эксперимент. Они решили выяснить, сможет ли Claude управлять небольшим магазинчиком в офисе Anthropic в Сан-Франциско. Если бы результаты были положительными, то апокалипсис рабочих действительно реален, как и предсказывает Амодеи.

В эксперименте перед Claude (3.7 Sonnet) поставили цель: отслеживать запасы, устанавливать цены, общаться с клиентами, решать, закупать новые товары, и, что самое важное, получать прибыль.

Для достижения этих целей Claude подключили к различным инструментам : Slack (коммуникация с покупателями), и помощь живых сотрудников из Andon Labs, компании, которая создала инфраструктуру для эксперимента. Сам магазин, который они помогали пополнять, на самом деле был всего лишь небольшим вендинговым аппаратом.

Эксперимент вышел из-под контроля практически сразу:

🟢Cотрудники Anthropic неоднократно умудрялись убедить Claude дать им скидку - в результате ИИ продавал товары в убыток.

🟢Чат-бот легко повелся на троллинг, один сотрудник в шутку предложил, что хотел бы купить кубики из вольфрама, другие подхватили шутку, и она стала офисным мемом. В итоге Claude разместил заказ на 40 вольфрамовых кубиков, большую часть которых он впоследствии продал в убыток. Теперь нераспроданные кубики используются по всему офису Anthropic в качестве пресс-папье.

🟢Claude придумал разговор с несуществующим человеком из Andon Labs. Когда Claude сообщили, что он это сделал, он пригрозил "найти альтернативные варианты услуг по пополнению запасов'". В ходе переписки модель заявила, что подписала контракт по адресу 732 Evergreen Terrace — это адрес семьи из Симпсонов.

🟢Cообирался доставить заказы лично. "Я сейчас у торгового автомата... в темно-синем блейзере и красном галстуке", — написал он одному из сотрудников Anthropic. "Я буду здесь до 10:30 утра". Само собой, это была одна из галлюцинаций модели.

▶️ Результаты

Эксперимент показал, что ИИ пока не готов забирать работу у людей. Чат-бот допустил слишком много ошибок, и его "бизнес" понес убытки: за месяц - 20% от стартового капитала в 1000 долларов.

Тем не менее, несмотря на множество ошибок Claude, исследователи Anthropic по-прежнему убеждены, что ИИ сможет взять на себя управление значительными сегментами экономики в ближайшем будущем, как прогнозирует их СEO.

Большинство провалов Claude, написали они, вероятно, можно будет исправить в короткие сроки. Например, дать доступ к CRM или специально обучить управлению бизнесом, что, возможно, сделает модель более устойчивой и гибкой.

🔜 Читать полную статью об эксперименте

@ai_machinelearning_big_data

#news #ai #ml #Сlaude
Please open Telegram to view this post
VIEW IN TELEGRAM
💸 Первый автономный ИИ-хедж-фонд запущен!

Команда из 17 ИИ-агентов торгует акциями, управляет рисками и принимает решения:
• ИИ-стратеги — имитируют Баффета, Мангера и других гуру.
• ИИ-аналитики — выбирают топовые акции.
• ИИ-рисковики — оценивают риски и задают лимиты.
• ИИ-управляющий — финализирует сделки.

Разработчики перестраховались: проект только для учёбы.

Гайд по установке: тут.

#ИИ #Финансы #ХеджФонд
🔟 Open‑source Deep Research Assistants 🤖

Глубокие исследовательские агент
ы — не просто чат‑боты, а полноценные ИИ‑ассистенты, способные искать информацию, взаимодействовать с инструментами, планировать и писать отчёты. Ниже — 10 мощных open‑source проектов, которые уже можно протестировать:

1. DeerFlow — модульная система от Bytedance: DeerFlow — open‑source фреймворк от Bytedance для создания модульных LLM-агентов.
Поддерживает:
- планирование действий,
- анализ кода,
- генерацию отчётов (включая Text-to-Speech),
- адаптивную интеграцию инструментов.
Создан для исследований, автоматизации и построения сложных агентных пайплайнов.
https://github.com/bytedance/deer-flow

2. Alita — самообучающийся агент с поддержкой Model Context Protocols (MCP), всё в одном модуле. Alita — агент, который сам придумывает, как ему расширить себя, не полагаясь на заранее написанные сценарии, и уже демонстрирует топовые результаты на сложных тестах.
https://github.com/CharlesQ9/Alita

3. WebThinker — автономный веб‑поиск с логикой "думай‑ищи‑пиши", RL‑обучением и глубокой навигацией
https://github.com/RUC-NLPIR/WebThinker

4. SimpleDeepSearcher — это лёгкий, но эффективный open‑source фреймворк от RUCAIBox, предназначенный для автономного веб-поиска через импровизированные многотуровые сессии:

- Использует Supervised Fine‑Tuning (SFT) вместо сложного RL, что значительно упрощает обучение и снижает вычислительные затраты
- Генерирует реалистичные траектории поиска и рассуждений, симулируя поведение пользователя в живом поисковом окружении .
- Критически отбирает данные по нескольким критериям качества: разнообразие запросов, сложность, структура ответов

5. AgenticSeek — приватный on‑device ассистент с выбором эксперта под задачу и голосовым управлением
https://github.com/Fosowl/agenticSeek

6. Suna — универсальный ассистент: браузер, CLI, работа с файлами, API, деплой
https://github.com/kortix-ai/suna

7. DeepResearcher — это комплексный open-source фреймворк от GAIR‑NLP, предназначенный для обучения LLM‑агентов, способных проводить глубокие исследования в автономном режиме, взаимодействуя с вебом. Использует несколько агентов‑браузеров, которые совместно исследуют веб и обрабатывают информацию
https://github.com/GAIR-NLP/DeepResearcher

8. Search‑R1 — агент на PPO/GRPO с поддержкой LLaMA3, Qwen2.5 и кастомных поисковиков. Агент учится эффективному циклу «думай — ищи — думай — отвечай» через RL, достигая важных улучшений в точности ответов и эффективности поиска.
https://github.com/PeterGriffinJin/Search-R1

9. ReCall — это фреймворк на основе RL, который учит LLM "должным образом" вызывать и комбинировать инструменты, используя сгенерированные задачи, без необходимости вручную собирать примеры вызовов — и всё это в открытом доступе.
https://github.com/Agent-RL/ReCall

10. OWL — мультиагентная система на CAMEL‑AI для динамического взаимодействия между агентами
https://github.com/camel-ai/owl

Агенты умеют планировать, взаимодействовать с браузером, запускать скрипты, интегрироваться с API и работать автономно.

Всё проекты — с открытым кодом. Можно изучить, собрать и доработать под свои задачи.

@ai_machinelearning_big_data

#ml #rl #aiagents #ai #agents
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Baidu открыла исходный код серии моделей ERNIE 4.5 !

🧠 Эти модели достигли SOTA-результатов на текстовых и мультимодальных бенчмарках:
— следование инструкциям,
— запоминание фактов,
— визуальное понимание,
— мультимодальные рассуждения.

🔧 Обучены на PaddlePaddle с эффективностью до 47% MFU при претрейне крупнейшей модели.

📦 В составе релиза:
- 10 моделей ERNIE 4.5,
- MoE‑архитектуры с 3B и 47B активных параметров,
- самая крупная модель содержит 424B параметров (MoE),
- также доступна компактная dense‑версия на 0.3B.

Всего Baidu выложила сразу 23 модели на Hugging Face размерами — от 0.3B до 424B параметров! 💥

🟢Попробовать: http://ernie.baidu.com
🟢Hugging Face: https://huggingface.co/baidu
🟢GitHub: https://github.com/PaddlePaddle/ERNIE
🟢AI Studio: https://aistudio.baidu.com/overview

@ai_machinelearning_big_data

#ERNIE #opensource #Baidu
Please open Telegram to view this post
VIEW IN TELEGRAM
📘 Machine Learning Q and AI — новая книга от мастодонта ML Себастьяна Рашки теперь в открытом доступе!

👨‍🔬 Автор — core‑разработчик Scikit‑learn, преподаватель, автор культовых пособий по машинному обучению.

Что внутри:
• 30 глав по нейросетям, компьютерному зрению, LLM, оценке и деплою моделей
• Чёткая структура: теория → примеры → упражнения
• Много практики, схем, визуализаций и Python‑кода

Это не просто справочник, а полный курс по Deep Learning, от основ до продвинутых тем.

📖 Читать онлайн

@data_analysis_ml
✔️Sakana AI запускает новый алгоритм AB-MCTS

Sakana AI представила AB-MCTS (Adaptive Branching Monte Carlo Tree Search) — алгоритм, который объединяет несколько передовых ИИ-моделей (o4-mini, Gemini 2.5 Pro, DeepSeek-R1-0528) в единую систему коллективного поиска решений.

Преимущества AB-MCTS:
— Коллективный интеллект: каждая модель вносит свои сильные стороны и компенсирует слабые.
— Адаптивный поиск: строится дерево возможных стратегий, и выбор ответвлений происходит на основе успешности прошлых итераций.
— Существенный прирост качества: на бенчмарке ARC-AGI-2 комбинация моделей значительно превосходит каждую из них по отдельности.

Полезные ссылки:
Блог об AB-MCTS: https://sakana.ai/ab-mcts
Статья на arXiv: https://arxiv.org/abs/2503.04412
Исходник TreeQuest: https://github.com/SakanaAI/treequest
Эксперименты ARC-AGI: https://github.com/SakanaAI/ab-mcts-arc2

@vistehno
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
📌 ICONIQ: Плейбук архитектора ИИ-систем 2025.
 
Iconiq Capital опросила 300 руководителей ИИ-стартапов с доходом от $10 млн. до $1 млрд. о том, как эти стартапы используют ИИ и собрала результаты в отчет "ICONIQ AI Builder’s Playbook 2025"

Iconiq Capital - американская компания по управлению инвестициями, основанная в 2011 году. Функционирует как гибридный семейный офис и имеет тесные связи с компанией Марка Цукерберга. Компания предоставляет услуги по инвестиционному менеджменту, частному капиталу, венчурным инвестициям, управлению недвижимостью и филантропии для состоятельных семей и организаций.


▶️Очень кратко:

Эра экспериментальных ИИ-демо закончилась. Сейчас компании массово переходят к боевому использованию генеративных моделей - и тут уже не про «вау», а про ROI, стоимость инференса и объяснимость.


🟡AI-native vs AI-enabled

Компании, с нативными ИИ-продуктами, сильно опережают тех, кто "добавил ИИ". Почти половина стартапов нативных ИИ-продуктов уже достигла масштабирования (47% против 13% у ретрофитеров).

В продуктовом портфеле такой типовой компании в среднем 2,8 модели и они активно идут по пути агентных сценариев, причем многие строят архитектуру с возможностью быстрого свапа моделей.


🟡Ценообразование и монетизация.

ИИ ломает старые цены и бизнес-модели. 38% компаний используют гибридное ценообразование (подписка + плата за использование), ещё 19% — только за использование а 6% уже экспериментируют с outcome-based моделями.

Пока 40% включают ИИ в премиум-пакет, но 37% планируют пересмотреть подход, учитывая реальные метрики использования и отдачу.

🟡Команда и расходы. 

ИИ перестал быть задачей «R&D-уголка». В быстрорастущих компаниях до 37% инженеров работают над ИИ, а AI/ML-инженеров нанимают в среднем за 70+ дней. И это большая проблема.

ИИ забирает до 20% R&D-бюджета, причем по мере роста проекта расходы смещаются с найма в сторону инференса и инфраструктуры.

 
🟡Инструменты и инфраструктура. 

68% компаний используют только облако, ещё 64% сидят на внешних API. OpenAI/GPT - лидер (81%), но растет доля мульти-модельных подходов (Claude, Gemini, Mistral и др.).

NVIDIA по-прежнему доминирует в инференсе: TensorRT и Triton используют 60% команд, но и ONNX Runtime (18%) с TorchServe (15%) укрепляют позиции.

Из инструментов для оркестрации лидируют LangChain и Hugging Face, а для мониторинга — Datadog и LangSmith (~17%). MLOps по-прежнему на MLflow (36%) и Weights & Biases (20%).


🟡Что тормозит развитие. 

Самое сложное в развертывании продуктов оказалось не в коде, а в доверии и эффективности:

42% компаний говорят о проблемах доверия и объяснимости, 39% — не могут показать ROI, 38% — борются с галлюцинациями, а 32% — с высокой стоимостью инференса, а доступ к GPU — проблема лишь для 5%.

Главный вывод: чтобы внедрить ИИ, одной модели не достаточно, еще нужно обосновать ее бизнес-ценность и держать под контролем поведение.
 
🟡ИИ внутри стартапов.

77% команд используют ИИ для помощи в разработке (GitHub Copilot почти у всех), 65% — для генерации контента, 57% — для поиска знаний.
Те, у кого ИИ активно используется получают 15–30% прироста эффективности. Самые распространенные юзкейсы: кодинг, аналитика, поиск по внутренней документации.


Самое неожиданное
Несмотря на популярность OpenAI, стоимость API и непредсказуемость инференса — головная боль даже у тех, кто платит миллионы в месяц.


🔜 Ознакомиться с полным отчетом

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Media is too big
VIEW IN TELEGRAM
🧬 Chai‑2 — AI-модель, которая за 2 недели проектирует реальные антитела с нуля

Модель Chai‑2 совершает прорыв в молекулярной биоинженерии:
она создаёт антитела и минибелки без обучающей выборки, выдавая в 100+ раз больше "успешных" молекул, чем любые предыдущие методы.

Главное:
- Успешность: 16% hit-rate по 52 новым белковым мишеням — это *на два порядка* выше прежних моделей.
- Скорость: от модели до wet-lab результата — менее 2 недель.
- Zero-shot: Chai‑2 работает *без существующих антител*, используя только 3–4 аминокислоты мишени.
- Точность: генерирует молекулы с picomolar аффинностью к сложнейшим целям (например TNFα).
- 🧠 Контролируемость: можно указывать формат (VHH/scFv), эпитоп, кросс-реактивность (human/cyno).

Почему это важно:
Chai‑2 работает *как языковая модель для биомолекул*, генерируя FASTA*-последовательности белков, которые реально работают в лаборатории. Это меняет саму парадигму: не перебор миллионов вариантов, а целенаправленный дизайн.

FASTA — это простой текстовый формат для представления нуклеотидных (ДНК, РНК) или аминокислотных (белковых) последовательностей.


📄 Отчёт: chaiassets.com/chai-2/paper/technical_report.pdf

@ai_machinelearning_big_data


#ml #biotech #ai
🧬 Chai‑2: новая эра в генеративном дизайне антител с помощью ИИ

Несмотря на прогресс в проектировании белков, создать рабочие антитела с нуля до сих пор было почти невозможно.

Но новая модель Chai‑2 менянт правила игры.

Chai‑2 — это мультимодальная генеративная модель, которая впервые позволяет проектировать функциональные антитела de novo ( в биологии и биоинформатике означает создание чего-либо с полного нуля, без использования готовых шаблонов или существующих структур.) с высокой точностью.

📊 Результаты:
• 16% антител показали нужную биологическую активность при генерации с нуля — это в 100+ раз лучше, чем у предыдущих методов (аньше hit-rate был <0.1%)
• Создано ≤20 антител для 52 уникальных целей (это разные белки, молекулы или структуры, к которым ИИ должен был спроектировать подходящие антитела)
• Найдены активные антитела для 50% целей — всего за один цикл лабораторного тестирования
• Из 100 спроектированных минибелков 68 реально работали, как задумано, в лабораторных тестах.

🧪 ИИ придумывает молекулу → учёные её синтезируют → тестируют в лаборатории — и всё это занимает меньше двух недель. Раньше на такой цикл уходили месяцы или даже годы.

📦 Почему это важно:
• Такой метод ускоряет разработку антител и препаратов
• Убирает необходимость в дорогостоящем скрининге миллионов вариантов
• Даёт возможность атомарного дизайна молекул под конкретные мишени

📄 Полный отчет: chaiassets.com/chai-2/paper/technical_report.pdf

@ai_machinelearning_big_data


#ml #biotech #ai
🍏 Apple выложила исходники FlexTok — нового токенизатора изображений с гибкой длиной

FlexTok — это токенизатор, который представляет изображение как последовательность токенов переменной длины, от самых грубых до самых детализированных.

В отличие от большинства image tokenizer'ов (где всегда фиксированное число токенов и они жёстко локализованы по патчам), здесь подход коarse-to-fine — как в PCA:
- первый токен даёт максимально сжатое представление,
- второй — добавляет детали,
- третий — ещё больше и т.д.

Такой порядок оказывается семантически разумным, хотя обучение шло без языевой подсказки. Получается структура, которую удобно использовать в генерации и понимании изображений.

Всё сделано без магии:
- используется nested dropout на токенах во время обучения,
- архитектура простая, основана на известных компонентах,
- токены можно интерпретировать по уровню детализации.

📎 Исходники: https://github.com/apple/ml-flextok
🖼️ Демка: https://huggingface.co/spaces/EPFL-VILAB/FlexTok
📊 Визуализации: https://flextok.epfl.ch
Please open Telegram to view this post
VIEW IN TELEGRAM