Математические байки
Доказательство. Любую траекторию (в частности, периодическую) можно включить в "слоение" плоскости: плоскость-образ после складывания можно нарезать на параллельные прямые, а потом взять полный прообраз этой нарезки. Получаются вот такие красивые картинки:
А, ещё вот такая картинка для определения слоения, кажется, более наглядная:
Правда, доказано по модулю того, почему именно для цветов запрещено то, что запрещено — а это как раз важная и смысловая часть.
Две вещи, которые используются в её доказательстве (и тут я начинаю говорить уже совсем пунктиром):
- Радиальное слоение. Можно на плоскости после складывания взять не нарезку на параллельные прямые, а нарезку на прямые, проходящие через вершину треугольника. И, опять-таки, взять у них прообраз:
Всё ещё получается (особое) слоение — раз на плоскости после складывания они, кроме как в вершине, не пересекались, то и про прообразы то же самое можно сказать.
Инструмент второй — символическая динамика: можно записывать/кодировать буквами a,b,c, какие именно стороны треугольников пересекает траектория:
(А вот — картинка даже для случая четырёхугольника, там уже a,b,c,d)
Ну вот с их помощью (уже не буду говорить, как) теорему о запрещённых цветках — а через неё и теорему о дереве — Ольга и доказывает.
А вот мультфильм с визуализацией этого, который был показан под конец лекции. Теперь вы знаете всё, что там появляется:
https://www.youtube.com/watch?v=t1r1cO1V35I
https://www.youtube.com/watch?v=t1r1cO1V35I
YouTube
Refraction Tilings
When a ray of light passes from one medium to another it changes its direction, where the change depends on both of the materials. Such a system, where the new direction is the mirror image of the original direction, produces very interesting dynamical systems…
И последний, ещё наглядный, но уже более сложный аккорд — это сложность траекторий.
Математические байки
Во-первых, бывают более сложные периодические траектории. И бывают траектории, линейно убегающие на бесконечность — периодичным или даже не-периодичным (с учётом сдвига) образом.
Вот мы видели периодические и линейно убегающие на бесконечность траектории. А что-нибудь ещё бывает? И насколько сложными бывают периодические траектории? И каким может быть набор всех траекторий для данного треугольного паркета?
Всё зависит от того, из каких именно треугольников собран паркет: