Но если есть периодическая траектория — можно её сдвигать "внутрь", пока не получится особая траектория — входящая и выходящая из какой-нибудь из вершин:
Назовём такую траекторию цветком (точнее, объединение всех траекторий слоения, проходящих через данную вершину: мы не можем говорить о траектории после входа в вершину).
Так вот — оказывается, что часть теоретически возможных вариантов поведения для цветка запрещена:
После чего можно запускать индукцию, сжимая и сжимая траекторию дальше (выкидывая вершину цветка) — мешали этому только запрещённые варианты.
Математические байки
Доказательство. Любую траекторию (в частности, периодическую) можно включить в "слоение" плоскости: плоскость-образ после складывания можно нарезать на параллельные прямые, а потом взять полный прообраз этой нарезки. Получаются вот такие красивые картинки:
А, ещё вот такая картинка для определения слоения, кажется, более наглядная:
Правда, доказано по модулю того, почему именно для цветов запрещено то, что запрещено — а это как раз важная и смысловая часть.
Две вещи, которые используются в её доказательстве (и тут я начинаю говорить уже совсем пунктиром):
- Радиальное слоение. Можно на плоскости после складывания взять не нарезку на параллельные прямые, а нарезку на прямые, проходящие через вершину треугольника. И, опять-таки, взять у них прообраз:
Всё ещё получается (особое) слоение — раз на плоскости после складывания они, кроме как в вершине, не пересекались, то и про прообразы то же самое можно сказать.
Инструмент второй — символическая динамика: можно записывать/кодировать буквами a,b,c, какие именно стороны треугольников пересекает траектория:
(А вот — картинка даже для случая четырёхугольника, там уже a,b,c,d)