То есть — солитоны « столкнулись », провзаимодействовали. Но когда разошлись, то остались сами собой — просто медленный в результате отстал, а быстрый ушёл вперёд. Удивительно, правда?
Математические байки
То есть — солитоны « столкнулись », провзаимодействовали. Но когда разошлись, то остались сами собой — просто медленный в результате отстал, а быстрый ушёл вперёд. Удивительно, правда?
Интересно, что на то же самое столкновение можно смотреть по-другому. Можно считать, что происходит абсолютно упругое столкновение между частицами-солитонами — в результате которого, как и положено при соударении одинаковых частиц на прямой, они обмениваются импульсами. Просто импульс (или скорость) частицы-солитона влияет на то, как он выглядит как волна; так что тот солитон, что был впереди, впереди и остался, просто у него теперь импульс больше.
Немного уходя в сторону — солитоны можно видеть и в дискретных моделях. Меня когда-то очень простой и симпатичной такой модели научил Е. Ю. Смирнов (он как раз тогда вернулся из поездки, где это узнал — и мы стояли вечером около метро и беседовали; до сих пор это помню!).
Итак, Box-Ball System. Пусть в каждой целочисленной точке на прямой выкопана лунка; в некоторых из них лежит по камню (всего — конечное число).
Каждую минуту из минус бесконечности в плюс бесконечность пробегает гонец с мешком. Пробегая мимо камня, он его подбирает и убирает в мешок. Пробегая мимо пустой лунки, если у него есть хоть один камень в мешке — он туда один камень кладёт.
Эквивалентно ещё можно сказать так: начиная с самого левого камня, последовательно перемещаем каждый камень, который ещё не сдвинут, в ближайшую пустую лунку правее него.
(Да — вот тут про эту модель рассказывает Vincent Duchêne на « пятиминутке Лебега ».)
Тогда группа из n камней образует « солитон » — движущийся как раз со скоростью n. А что будет, если два таких солитона столкнутся?
Итак, Box-Ball System. Пусть в каждой целочисленной точке на прямой выкопана лунка; в некоторых из них лежит по камню (всего — конечное число).
Каждую минуту из минус бесконечности в плюс бесконечность пробегает гонец с мешком. Пробегая мимо камня, он его подбирает и убирает в мешок. Пробегая мимо пустой лунки, если у него есть хоть один камень в мешке — он туда один камень кладёт.
Эквивалентно ещё можно сказать так: начиная с самого левого камня, последовательно перемещаем каждый камень, который ещё не сдвинут, в ближайшую пустую лунку правее него.
(Да — вот тут про эту модель рассказывает Vincent Duchêne на « пятиминутке Лебега ».)
Тогда группа из n камней образует « солитон » — движущийся как раз со скоростью n. А что будет, если два таких солитона столкнутся?
Вот тут мы запустили два солитона — группы из 5 и из 2 камней. Понятно, что группа из 5 движется быстрее и догоняет. Вот-вот…
Forwarded from Непрерывное математическое образование
https://youtu.be/POmhapS12mA
Tadashi Tokieda. Pure Mathematics as Applied Physics
24.01 7pm ET = 25.01, 03:00Msk
(неловко анонсировать мероприятие в такое время, но лектор совершенно замечательный, а записи не планируется)
Humans tend to be better at physics than at mathematics. When an apple falls from a tree, there are more people who can catch it—they know physically how the apple moves—than people who can compute its trajectory from a differential equation. Applying physical ideas to discover and explain mathematical results is therefore natural, even if it has seldom been tried in the history of science. (The exceptions include Archimedes, some old Russian sources, a recent book of Levi’s, as well as my articles and lectures.) A variety of elementary yet surprising examples will be presented.
Tadashi Tokieda. Pure Mathematics as Applied Physics
24.01 7pm ET = 25.01, 03:00Msk
(неловко анонсировать мероприятие в такое время, но лектор совершенно замечательный, а записи не планируется)
Humans tend to be better at physics than at mathematics. When an apple falls from a tree, there are more people who can catch it—they know physically how the apple moves—than people who can compute its trajectory from a differential equation. Applying physical ideas to discover and explain mathematical results is therefore natural, even if it has seldom been tried in the history of science. (The exceptions include Archimedes, some old Russian sources, a recent book of Levi’s, as well as my articles and lectures.) A variety of elementary yet surprising examples will be presented.
Математические байки
А ещё интереснее, если исходная решётка была треугольной... Попробуйте сделать сами (когда Тадаси мне это показал, я прыгал от восторга)! Ну а когда я рассказал это Коле Андрееву, он сказал, что уже знает по другой причине — см. последнюю иллюстрацию отсюда:…
Добавлю (к пересылаемому) от себя — Тадаси совершенно прекрасен! Очень много что я узнал в первый раз от него, включая истории про приливы, про муары (как раз то, что я тут рассказывал), и так далее.
Давайте теперь посмотрим, как можно искать солитонные решения?
Солитон движется, сохраняя свою форму. То есть нас интересует решение, которое просто движется вперёд с фиксированной скоростью c. Это значит, что производная u_t это просто -c*u_x. И наоборот, если в начальный момент времени у нас выполнено равенство u_t = -c * u_x (и мы верим в единственность решения), то решение и дальше « поедет со скоростью c », будет иметь вид
u(t,x) = u(0,x-ct).
И вот мы и получаем уравнение на профиль f(x)=u(0,x) солитона: нужно просто заменить u_t на -cu_x в уравнении КдФ. Итого:
-c f_x + (3/2) f f_x + (1/4) f_xxx = 0.
Будем решать? (Сейчас окажется, что всё вполне решается, причём с интересными промежуточными шагами.)
Солитон движется, сохраняя свою форму. То есть нас интересует решение, которое просто движется вперёд с фиксированной скоростью c. Это значит, что производная u_t это просто -c*u_x. И наоборот, если в начальный момент времени у нас выполнено равенство u_t = -c * u_x (и мы верим в единственность решения), то решение и дальше « поедет со скоростью c », будет иметь вид
u(t,x) = u(0,x-ct).
И вот мы и получаем уравнение на профиль f(x)=u(0,x) солитона: нужно просто заменить u_t на -cu_x в уравнении КдФ. Итого:
-c f_x + (3/2) f f_x + (1/4) f_xxx = 0.
Будем решать? (Сейчас окажется, что всё вполне решается, причём с интересными промежуточными шагами.)
Во-первых, можно заметить, что выражение выше это производная по x от чего-то явного. Потому что
f * f_x = (f^2/2)_x;
и в сумме выражение это производная от
-c f + (3/4) f^2 + (1/4) f_xx.
И раз производная равна нулю — то это выражение равно (неизвестной) константе A.
f * f_x = (f^2/2)_x;
и в сумме выражение это производная от
-c f + (3/4) f^2 + (1/4) f_xx.
И раз производная равна нулю — то это выражение равно (неизвестной) константе A.
Во-вторых, уравнение (давайте его сразу на 4 умножим)
f_xx = F(f),
где F(f) = - 3 f^2 + 4c f + 4A —
это уравнение Ньютона: движение материальной точки f(x) в поле сил F(f), отвечающего потенциальной энергии U(f), для которой F(f)=-U’(f). Только роль времени играет координата x!
f_xx = F(f),
где F(f) = - 3 f^2 + 4c f + 4A —
это уравнение Ньютона: движение материальной точки f(x) в поле сил F(f), отвечающего потенциальной энергии U(f), для которой F(f)=-U’(f). Только роль времени играет координата x!
Потенциальная энергия
U(f) = f^3 - 2c f^2 + 4Af,
и следующий шаг тут — стандартный при работе с уравнением Ньютона: закон сохранения энергии: сумма кинетической и потенциальной энергии,
(1/2) f_x^2 + U(f),
не зависит от x. Можно, конечно, проигнорировать физический смысл происходящего и просто сказать, что мы домножаем уравнение на f_x, после чего опять оно оказывается производной по x — как раз от « полной энергии ». Потому что f_x f_xx это как раз производная от (1/2) f_x^2, ну а -F(f) f_x получается при дифференцировании U(f(x)).
U(f) = f^3 - 2c f^2 + 4Af,
и следующий шаг тут — стандартный при работе с уравнением Ньютона: закон сохранения энергии: сумма кинетической и потенциальной энергии,
(1/2) f_x^2 + U(f),
не зависит от x. Можно, конечно, проигнорировать физический смысл происходящего и просто сказать, что мы домножаем уравнение на f_x, после чего опять оно оказывается производной по x — как раз от « полной энергии ». Потому что f_x f_xx это как раз производная от (1/2) f_x^2, ну а -F(f) f_x получается при дифференцировании U(f(x)).
Итак,
(1/2) f_x^2 + U(f) = E,
где E — (ещё одна неизвестная) константа. Это позволяет выразить (с точностью до знака) « скорость » f_x через « положение » f,
df/dx = f_x = \pm \sqrt{2 (E-U(f))}.
Иными словами, нам известна (ну, с точностью до знака) « скорость » f_x в любом « месте » f. Значит, мы знаем, сколько « времени » x нужно, чтобы пройти от одного значения f до другого: время в пути это интеграл по пути от единицы на скорость. Иными словами, если домножить на dx и поделить на выражение для f_x, получится
df/ \sqrt{2 (E-U(f))} = \pm dx,
и интеграл в левой части это функция от f, а в правой от x.
(1/2) f_x^2 + U(f) = E,
где E — (ещё одна неизвестная) константа. Это позволяет выразить (с точностью до знака) « скорость » f_x через « положение » f,
df/dx = f_x = \pm \sqrt{2 (E-U(f))}.
Иными словами, нам известна (ну, с точностью до знака) « скорость » f_x в любом « месте » f. Значит, мы знаем, сколько « времени » x нужно, чтобы пройти от одного значения f до другого: время в пути это интеграл по пути от единицы на скорость. Иными словами, если домножить на dx и поделить на выражение для f_x, получится
df/ \sqrt{2 (E-U(f))} = \pm dx,
и интеграл в левой части это функция от f, а в правой от x.
Первое замечание — мы только что научились решать (ну, с использованием « волшебной палочки » в виде неопределённого интеграла, но это в этой науке традиционно) одномерные автономные дифференциальные уравнения первого порядка. А сводя к ним с помощью закона сохранения энергии — и одномерные уравнения классической механики (уравнения Ньютона).
Второе — что вообще-то мы пока ничего не понимаем, потому что у нас остался тот самый неопределённый интеграл, на который мы даже не посмотрели… Так что до того, как дальше возиться с формулами, хорошо бы понять геометрию происходящего.
Второе — что вообще-то мы пока ничего не понимаем, потому что у нас остался тот самый неопределённый интеграл, на который мы даже не посмотрели… Так что до того, как дальше возиться с формулами, хорошо бы понять геометрию происходящего.