Forwarded from Непрерывное математическое образование
globus1-ilyashenko.pdf
227.8 KB
к юбилею Юлия Сергеевича Ильяшенко — пусть здесь будет его обзор «Столетняя история 16-й проблемы Гильберта» в трудах семинара «Глобус»
Ещё один сюжет — про меры с нулевым центральным показателем Ляпунова.
Есть давний вопрос теории динамических систем: «как ведёт себя типичная динамическая система?». В его понимании за прошедшие лет сто происходило несколько революций.
Когда-то — казалось, что типичная динамическая система «сваливается» в простой предельный режим: стремится к положению равновесия или периодической траектории.
Работы Картрайт, Литтлвуда и Левинсона, открытие подковы Смейла и диффеоморфизмов Аносова в начале 60-ых показали, что бывают неустранимо-хаотичные системы. И это была революция гиперболической динамики.
Типичный пример тут — отображение A=(2,1 \\ 1,1), действующее на торе R^2/Z^2: точка (x,y) переходит в (2x+y,x+y). У матрицы одно собственное значение λ_1 больше 1, второе λ_2 меньше.
Заменой координат на плоскости R^2 матрицу A можно было бы привести к диагональному виду: одна координата умножается на λ_1, вторая на λ_2 — и почти любая пара близких орбит разбегается с экспоненциальной скоростью: разница новых первых координат умножается на λ_1 на каждом шаге. Наоборот, если мы попробуем продолжить траектории в прошлое, траектории тоже будут разбегаться: разница новых вторых координат будет делиться на λ_2 на каждом шаге, и это опять экспоненциальное возрастание.
Произвольная система f:X->X, конечно, совершенно не линейная. Но рядом с любой точкой p можно посмотреть, что происходит «в линейном приближении». А именно, можно взять отображение за n шагов f^n, взять у него [~~производную~~] дифференциал в этой точке
B=df^n |_p,
взять её сингулярные значения µ_j (корни из собственных значений B^* B ) после чего посмотреть на величины
(1/n) log µ_j
(если бы у нас была линейная динамика, это были бы логарифмы модулей λ_j) и перейти к пределу, когда число итераций стремится к бесконечности. Эти пределы называются показателями Ляпунова.
Соответственно, положительный показатель Ляпунова отвечает экспоненциальному разбеганию траекторий, отрицательный — сближению. Если есть и положительные, и отрицательные показатели — то типичная пара точек разбегается со скоростью, диктуемой наибольшим показателем Ляпунова.
В чисто гиперболическом случае часть показателей Ляпунова положительна, часть отрицательна. И следующий вопрос — а может ли у типичной системы (и у её траекторий) быть не-экспоненциальное поведение? Насколько часто встречаются нулевые показатели Ляпунова? В точности нулевые — нельзя ли их изжить, если чуть-чуть "пошевелить" исходную систему?
Ещё в конце 1990-ых Юлий Сергеевич Ильяшенко и Антон Городецкий придумали стратегию Городецкого-Ильяшенко, которая позволяла строить примеры систем с нужным поведением траекторий (в том числе, в смысле показателей Ляпунова) «контролируемым образом».
А потом, в 2005-ом, мы вчетвером — Юлий Сергеевич, Антон, Максим Нальский и я — построили не разрушающийся малыми возмущениями пример, в котором нулевые показатели Ляпунова присутствовали не только в смысле отдельных траекторий, но и в смысле инвариантных мер. Эту работу мы между собой называли — по первым буквам фамилий — «ГИКН»; недавно коллеги, воспользовавшись анаграммой KING, назвали получающиеся из этой конструкции меры королевскими (royal measures). 🙂
И я помню два момента: когда всё только начиналось, мы сидели на 4-м этаже Независимого, Юлий Сергеевич объяснял нам, что хочется сделать, и у меня была (каюсь!) мысль «но это же не может сработать!». И второй, через несколько месяцев — когда стало понятно, что не просто всё работает, а что в результате получается «эндшпиль с лишними двумя фигурами»: можно довести рассуждение так, можно так, а можно вообще вот эдак, всё равно всё сходится. И это было очень сильно.
С днём рождения, Юлий Сергеевич! Спасибо Вам огромное — и всего Вам самого лучшего!
Есть давний вопрос теории динамических систем: «как ведёт себя типичная динамическая система?». В его понимании за прошедшие лет сто происходило несколько революций.
Когда-то — казалось, что типичная динамическая система «сваливается» в простой предельный режим: стремится к положению равновесия или периодической траектории.
Работы Картрайт, Литтлвуда и Левинсона, открытие подковы Смейла и диффеоморфизмов Аносова в начале 60-ых показали, что бывают неустранимо-хаотичные системы. И это была революция гиперболической динамики.
Типичный пример тут — отображение A=(2,1 \\ 1,1), действующее на торе R^2/Z^2: точка (x,y) переходит в (2x+y,x+y). У матрицы одно собственное значение λ_1 больше 1, второе λ_2 меньше.
Заменой координат на плоскости R^2 матрицу A можно было бы привести к диагональному виду: одна координата умножается на λ_1, вторая на λ_2 — и почти любая пара близких орбит разбегается с экспоненциальной скоростью: разница новых первых координат умножается на λ_1 на каждом шаге. Наоборот, если мы попробуем продолжить траектории в прошлое, траектории тоже будут разбегаться: разница новых вторых координат будет делиться на λ_2 на каждом шаге, и это опять экспоненциальное возрастание.
Произвольная система f:X->X, конечно, совершенно не линейная. Но рядом с любой точкой p можно посмотреть, что происходит «в линейном приближении». А именно, можно взять отображение за n шагов f^n, взять у него [~~производную~~] дифференциал в этой точке
B=df^n |_p,
взять её сингулярные значения µ_j (корни из собственных значений B^* B ) после чего посмотреть на величины
(1/n) log µ_j
(если бы у нас была линейная динамика, это были бы логарифмы модулей λ_j) и перейти к пределу, когда число итераций стремится к бесконечности. Эти пределы называются показателями Ляпунова.
Соответственно, положительный показатель Ляпунова отвечает экспоненциальному разбеганию траекторий, отрицательный — сближению. Если есть и положительные, и отрицательные показатели — то типичная пара точек разбегается со скоростью, диктуемой наибольшим показателем Ляпунова.
В чисто гиперболическом случае часть показателей Ляпунова положительна, часть отрицательна. И следующий вопрос — а может ли у типичной системы (и у её траекторий) быть не-экспоненциальное поведение? Насколько часто встречаются нулевые показатели Ляпунова? В точности нулевые — нельзя ли их изжить, если чуть-чуть "пошевелить" исходную систему?
Ещё в конце 1990-ых Юлий Сергеевич Ильяшенко и Антон Городецкий придумали стратегию Городецкого-Ильяшенко, которая позволяла строить примеры систем с нужным поведением траекторий (в том числе, в смысле показателей Ляпунова) «контролируемым образом».
А потом, в 2005-ом, мы вчетвером — Юлий Сергеевич, Антон, Максим Нальский и я — построили не разрушающийся малыми возмущениями пример, в котором нулевые показатели Ляпунова присутствовали не только в смысле отдельных траекторий, но и в смысле инвариантных мер. Эту работу мы между собой называли — по первым буквам фамилий — «ГИКН»; недавно коллеги, воспользовавшись анаграммой KING, назвали получающиеся из этой конструкции меры королевскими (royal measures). 🙂
И я помню два момента: когда всё только начиналось, мы сидели на 4-м этаже Независимого, Юлий Сергеевич объяснял нам, что хочется сделать, и у меня была (каюсь!) мысль «но это же не может сработать!». И второй, через несколько месяцев — когда стало понятно, что не просто всё работает, а что в результате получается «эндшпиль с лишними двумя фигурами»: можно довести рассуждение так, можно так, а можно вообще вот эдак, всё равно всё сходится. И это было очень сильно.
С днём рождения, Юлий Сергеевич! Спасибо Вам огромное — и всего Вам самого лучшего!
Многие наверняка видели треугольник Серпинского: берём правильный треугольник, вырезаем в середине дырку — серединный треугольник, потом вырезаем дырки в каждом из трёх получившихся треугольников, и так далее. По-другому это можно сказать так:
- начинаем с правильного треугольника X_0 с вершинами A_1, A_2, A_3;
- а дальше на каждом шаге заменяем имеющуюся фигуру X_n на объединение X_{n+1} её образов T_1(X_n), T_2(X_n), T_3(X_n), где отображения T_j — гомотетии, сжимающие в два раза к точкам A_j.
Легко проверить по индукции, что X_{n+1} содержится в X_n, ну а треугольник Серпинского — предельный объект, пересечение их всех.
(image credit: Wikipedia)
- начинаем с правильного треугольника X_0 с вершинами A_1, A_2, A_3;
- а дальше на каждом шаге заменяем имеющуюся фигуру X_n на объединение X_{n+1} её образов T_1(X_n), T_2(X_n), T_3(X_n), где отображения T_j — гомотетии, сжимающие в два раза к точкам A_j.
Легко проверить по индукции, что X_{n+1} содержится в X_n, ну а треугольник Серпинского — предельный объект, пересечение их всех.
(image credit: Wikipedia)
У него есть естественный аналог: тетраэдр Серпинского.
- Начинаем с правильного тетраэдра X_0 с вершинами A_1, A_2, A_3, A_4;
- а дальше на каждом шаге заменяем имеющуюся фигуру X_n на объединение X_{n+1} её образов T_1(X_n), T_2(X_n), T_3(X_n), T_4(X_n), где отображения T_j — гомотетии, сжимающие в два раза к точкам A_j.
Легко проверить по индукции, что X_{n+1} содержится в X_n, а тетраэдр Серпинского — предельный объект, пересечение их всех.
На него можно посмотреть на фото — кстати, на его гранях мы видим как раз треугольники Серпинского.
А теперь — внимание, вопрос: давайте возьмём проекцию тетраэдра Серпинского вдоль прямой, соединяющей середины его противоположных рёбер. Как вы думаете, что получится?
И вопрос со звёздочкой: а при чём тут игра ним?
- Начинаем с правильного тетраэдра X_0 с вершинами A_1, A_2, A_3, A_4;
- а дальше на каждом шаге заменяем имеющуюся фигуру X_n на объединение X_{n+1} её образов T_1(X_n), T_2(X_n), T_3(X_n), T_4(X_n), где отображения T_j — гомотетии, сжимающие в два раза к точкам A_j.
Легко проверить по индукции, что X_{n+1} содержится в X_n, а тетраэдр Серпинского — предельный объект, пересечение их всех.
На него можно посмотреть на фото — кстати, на его гранях мы видим как раз треугольники Серпинского.
А теперь — внимание, вопрос: давайте возьмём проекцию тетраэдра Серпинского вдоль прямой, соединяющей середины его противоположных рёбер. Как вы думаете, что получится?
И вопрос со звёздочкой: а при чём тут игра ним?
Forwarded from ppetya
От Арнольда знаю такое утверждение: период физического маятника строго монотонно зависит от амплитуды. Даже производная не нулевая. В одном из его экзаменов по обыкновенным дифференциальным уравнениям это (вернее: задача быстро сводящаяся к этой) была самая сложная задача.
Не видал пока молодых математических людей (и сам таким не был), которые могли бы ее быстро решить.
не видел в книжках, чтобы этот факт о монотонности был явно сформулирован - если кто видел — скажите
Не видал пока молодых математических людей (и сам таким не был), которые могли бы ее быстро решить.
не видел в книжках, чтобы этот факт о монотонности был явно сформулирован - если кто видел — скажите
Forwarded from Непрерывное математическое образование
картинки по выходным: теорема Наполеона и ее родствениики из свежего Квантика, https://kvantik.com/issue/pdf/2023-11_sample.pdf
Математические байки
У него есть естественный аналог: тетраэдр Серпинского. - Начинаем с правильного тетраэдра X_0 с вершинами A_1, A_2, A_3, A_4; - а дальше на каждом шаге заменяем имеющуюся фигуру X_n на объединение X_{n+1} её образов T_1(X_n), T_2(X_n), T_3(X_n), T_4(X_n)…
Ответ на вопрос довольно удивительный — это... квадрат! Причём почти все его точки (кроме счётного объединения отрезков) получаются ровно из одной точки тетраэдра Серпинского.
На фотографии — тот же самый тетраэдр Серпинского, снятый с нужного направления и с достаточно большого расстояния, чтобы это была почти параллельная проекция.
На фотографии — тот же самый тетраэдр Серпинского, снятый с нужного направления и с достаточно большого расстояния, чтобы это была почти параллельная проекция.
Убедиться в этом довольно просто. Сначала поймём, почему проекция обычного тетраэдра это квадрат. Для этого лучше всего заметить, что при "шахматной" раскраске вершин куба 4 одноцветные вершины образуют как раз правильный тетраэдр. Тогда середины противоположных рёбер этого тетраэдра это середины противоположных граней куба, так что направление проектирования это одно из направлений рёбер куба (на рисунке — вертикального). А 4 другие ребра тетраэдра — это диагонали 4 других граней куба (на рисунке — боковых), так что они проецируются в рёбра основания. И вот и получилось, что проекция тетраэдра это квадрат.
Остаётся вспомнить процедуру построения тетраэдра Серпинского, когда на каждом новом шаге мы объединяем гомотетичные образы фигуры на предыдущем шаге, сжимая её в два раза к каждой из вершин тетраэдра.
Проекция сжатой в два раза фигуры — это сжатая в два раза проекция. Но если квадрат сжать в 2 раза к каждой из вершин, то в объединении получится опять исходный квадрат! (А маленькие квадраты будут пересекаться только по рёбрам.)
Повторяя опять и опять, в пределе мы в пространстве получаем тетраэдр Серпинского — а в проекции всё тот же исходный квадрат.
Проекция сжатой в два раза фигуры — это сжатая в два раза проекция. Но если квадрат сжать в 2 раза к каждой из вершин, то в объединении получится опять исходный квадрат! (А маленькие квадраты будут пересекаться только по рёбрам.)
Повторяя опять и опять, в пределе мы в пространстве получаем тетраэдр Серпинского — а в проекции всё тот же исходный квадрат.
Forwarded from Геометрия-канал (Grigory Merzon)
Точку Торричелли треугольника соединили с вершинами. В трех получившихся треугольниках провели прямые Эйлера. Доказать, что они проходят через одну точку.
// задачку рассказал Р.К.Гордин сегодня
// задачку рассказал Р.К.Гордин сегодня
Forwarded from Непрерывное математическое образование
kvant2018-gordin.pdf
294.6 KB
к сегодняшнему юбилею Рафаила Калмановича Гордина — пусть здесь будет его недавнее интервью
К. Кноп меня тут научил, что треугольник Серпинского связан с ханойской башней. А именно, возможные конфигурации n колец можно сопоставить маленьким треугольникам на салфетке "порядка n" (после n раундов выкидывания).
При этом конфигурациям, отличающимся на один разрешённый ход, соответствуют соседние треугольники. Полностью собранным на одном из стержней кольцам — маленькие треугольники в самых вершинах исходного. А знание положений k самых больших колец определяет, в каком треугольнике ранга k (получающегося после k раундов выкидывания) содержится отвечающий данной позиции самый маленький.
Построить можно по индукции — построив для (n-1) кольца и состыковав [правильно повернув] три таких (отвечающих возможным положениям последнего кольца) нужным образом: треугольники "последнее кольцо на вершине А" и "последнее кольцо на вершине B" должны стыковаться по тем вершинам, где все кольца, кроме последнего, собраны в вершине C.
При этом конфигурациям, отличающимся на один разрешённый ход, соответствуют соседние треугольники. Полностью собранным на одном из стержней кольцам — маленькие треугольники в самых вершинах исходного. А знание положений k самых больших колец определяет, в каком треугольнике ранга k (получающегося после k раундов выкидывания) содержится отвечающий данной позиции самый маленький.
Построить можно по индукции — построив для (n-1) кольца и состыковав [правильно повернув] три таких (отвечающих возможным положениям последнего кольца) нужным образом: треугольники "последнее кольцо на вершине А" и "последнее кольцо на вершине B" должны стыковаться по тем вершинам, где все кольца, кроме последнего, собраны в вершине C.
Математические байки
К. Кноп меня тут научил, что треугольник Серпинского связан с ханойской башней. А именно, возможные конфигурации n колец можно сопоставить маленьким треугольникам на салфетке "порядка n" (после n раундов выкидывания). При этом конфигурациям, отличающимся…
Картинка к предыдущему: маленькие треугольники, отвечающие ситуациями, когда:
- все кольца на одном из стержней (заштрихованные в вершинах)
- все кольца, кроме самого большого, на одном стержне, а большое на другом (отмеченные точками).
- все кольца на одном из стержней (заштрихованные в вершинах)
- все кольца, кроме самого большого, на одном стержне, а большое на другом (отмеченные точками).
Математические байки
У него есть естественный аналог: тетраэдр Серпинского. - Начинаем с правильного тетраэдра X_0 с вершинами A_1, A_2, A_3, A_4; - а дальше на каждом шаге заменяем имеющуюся фигуру X_n на объединение X_{n+1} её образов T_1(X_n), T_2(X_n), T_3(X_n), T_4(X_n)…
К вопросу со звёздочкой: давайте я немного поговорю про игру "ним".
Правила игры — есть несколько кучек камней, за один ход можно взять сколько угодно камней из любой одной кучки. Кто не может сделать ход — проиграл (иными словами, выигрывает взявший последний камень).
Игра на одной кучке тривиальна; игра на двух кучках решается симметричной стратегией — если в кучках одинаковое число камней, выигрывает второй игрок, а иначе начинающий (берущий столько, чтобы в кучках стало поровну). А что будет для игры с тремя кучками камней?
Возможным позициям в игре с двумя кучками можно сопоставить клетки (полубесконечной) таблицы или доски — позиции с i и j камнями в кучках соответствует клетка с координатами (i,j). И игра в таком случае превращается в игру "ладью — в угол", когда игроки по очереди двигают ладью влево или вниз на любое число клеток. И даже если симметрическая стратегия не угадывается сразу — она бросается в глаза, если раскрасить клетки-позиции на выигрышные и проигрышные.
Игра же на трёх кучках превращается уже в трёхмерную таблицу или доску. Давайте ограничим число камней в кучках — пусть в каждой кучке их меньше N.
Вопрос: как выглядит множество проигрышных клеток внутри куба NxNxN? Скажем, если этот куб затем сжать в N раз, чтобы он стал единичным, после чего клетки станут этакими "пикселями" (ну, или "вокселями", потому что они трёхмерные).
Если вы никогда этого не делали — попробуйте разобраться, что происходит для N=8. Игру можно разбирать "по слоям": сначала раскрасить доску 8x8, отвечающую позициям (i,j,k) с k=0. Собственно, тут это уже разобранный случай двух кучек.
Потом — с k=1 (учтя возможность хода "вниз"). Потом с k=2,3,... . И ответ сам по себе начнёт "проявляться"!
Правила игры — есть несколько кучек камней, за один ход можно взять сколько угодно камней из любой одной кучки. Кто не может сделать ход — проиграл (иными словами, выигрывает взявший последний камень).
Игра на одной кучке тривиальна; игра на двух кучках решается симметричной стратегией — если в кучках одинаковое число камней, выигрывает второй игрок, а иначе начинающий (берущий столько, чтобы в кучках стало поровну). А что будет для игры с тремя кучками камней?
Возможным позициям в игре с двумя кучками можно сопоставить клетки (полубесконечной) таблицы или доски — позиции с i и j камнями в кучках соответствует клетка с координатами (i,j). И игра в таком случае превращается в игру "ладью — в угол", когда игроки по очереди двигают ладью влево или вниз на любое число клеток. И даже если симметрическая стратегия не угадывается сразу — она бросается в глаза, если раскрасить клетки-позиции на выигрышные и проигрышные.
Игра же на трёх кучках превращается уже в трёхмерную таблицу или доску. Давайте ограничим число камней в кучках — пусть в каждой кучке их меньше N.
Вопрос: как выглядит множество проигрышных клеток внутри куба NxNxN? Скажем, если этот куб затем сжать в N раз, чтобы он стал единичным, после чего клетки станут этакими "пикселями" (ну, или "вокселями", потому что они трёхмерные).
Если вы никогда этого не делали — попробуйте разобраться, что происходит для N=8. Игру можно разбирать "по слоям": сначала раскрасить доску 8x8, отвечающую позициям (i,j,k) с k=0. Собственно, тут это уже разобранный случай двух кучек.
Потом — с k=1 (учтя возможность хода "вниз"). Потом с k=2,3,... . И ответ сам по себе начнёт "проявляться"!
Forwarded from Непрерывное математическое образование
https://youtu.be/5q_sfXY-va8
( и https://youtu.be/KD_hRn_97RI )
новое видео Mathologer'а (при участии Henry Segerman'а) про объем шара и площадь сферы
( и https://youtu.be/KD_hRn_97RI )
новое видео Mathologer'а (при участии Henry Segerman'а) про объем шара и площадь сферы
YouTube
Why are the formulas for the sphere so weird? (major upgrade of Archimedes' greatest discoveries)
In today’s video we’ll make a little bit of mathematical history. I'll tell you about a major upgrade of one of Archimedes' greatest discoveries about the good old sphere that so far only a handful of mathematicians know about.
00:00 Intro to the baggage…
00:00 Intro to the baggage…
Иллюстрация к описанному выше — картинки "разворачивающихся меридианов" и проверки сохранения площадей: скриншоты из видео MathoLoger'а ( https://youtu.be/5q_sfXY-va8 )
Forwarded from ppetya
Симплектоморфизм Архимеда (так называл его Арнольд) — это замечательное отображение сферы без полюсов на цилиндр, описанный около сферы. Это отображение сохраняет вертикальную и угловую координаты точки. Замечательно оно тем, что является симплектоморфизмом, то есть сохраняет площади — фигура на сфере переходит в фигуру той же площади на цилиндре. В частности площадь цилиндра равна площади сферы (это многие проверят в уме).
Сегодня узнал в канале непрерывного математического образования про совершенно другой симплектоморфизм: между сферой без северного полюса и кругом двойного радиуса. В канале мультик с рассказом, а словами этот симплектоморфизм описывается так: каждый меридиан (из южного полюса) сферы нужно повернуть вокруг его касательной в южном полюсе так, чтобы он стал горизонтальным. Получается круг, двойного радиуса, его площадь равна площади сферы, но более того — площади фигур сохраняются.
Первый симплектоморфизм имел (если не путаю) отношение к «теореме о теннисном мяче» — вложенная гладкая кривая на сфере, делящая ее площадь пополам, имеет не меньше четырех перегибов. А какие замечательные точки кривых на сфере можно «увидеть» с помощью второго симплектоморфизма?
Сегодня узнал в канале непрерывного математического образования про совершенно другой симплектоморфизм: между сферой без северного полюса и кругом двойного радиуса. В канале мультик с рассказом, а словами этот симплектоморфизм описывается так: каждый меридиан (из южного полюса) сферы нужно повернуть вокруг его касательной в южном полюсе так, чтобы он стал горизонтальным. Получается круг, двойного радиуса, его площадь равна площади сферы, но более того — площади фигур сохраняются.
Первый симплектоморфизм имел (если не путаю) отношение к «теореме о теннисном мяче» — вложенная гладкая кривая на сфере, делящая ее площадь пополам, имеет не меньше четырех перегибов. А какие замечательные точки кривых на сфере можно «увидеть» с помощью второго симплектоморфизма?