+ два скриншота из дубнинской брошюры Е. Ю. Смирнова, Диаграммы Юнга, плоские разбиения и знакочередующиеся матрицы :
В оооочень больших кавычках можно говорить, что выбор подпространств и действия на них линейными преобразованиями над «полем из одного элемента» (которого не существует) превращаются в комбинаторику (выбор k элементов из n) и действие групп перестановок. Но поскольку мне тут для аккуратного рассказа знаний не хватает — чтобы не соврать, я так говорить не буду. 🙂
P.S. Курс Г. Б. Шабата в 2009 году, «Когда 1 = 0…»:
анонс https://old.mccme.ru/dubna/2009/courses/shabat.htm + видеозаписи: https://www.mathnet.ru/present9121
P.S. Курс Г. Б. Шабата в 2009 году, «Когда 1 = 0…»:
анонс https://old.mccme.ru/dubna/2009/courses/shabat.htm + видеозаписи: https://www.mathnet.ru/present9121
Forwarded from Непрерывное математическое образование
сегодня на ЛШСМ
в 11:15 — В.И.Богачев «Старые задачи иногда решаются (корреляционное неравенство и гипотеза Кантелли)», https://vkvideo.ru/video-65937233_456239369
в 15:30 — С.К.Смирнов «Мозаики, замощения, порядок и хаос», https://vkvideo.ru/video-65937233_456239370
в 11:15 — В.И.Богачев «Старые задачи иногда решаются (корреляционное неравенство и гипотеза Кантелли)», https://vkvideo.ru/video-65937233_456239369
в 15:30 — С.К.Смирнов «Мозаики, замощения, порядок и хаос», https://vkvideo.ru/video-65937233_456239370
Forwarded from Непрерывное математическое образование
напомним также про книгу «Математический Петербург» (редактор-составитель Г.И.Синкевич, научный редактор А.И.Назаров)
электронная версия: https://www.mathsoc.spb.ru/history/MathSPb2ed.pdf / https://www.mathedu.ru/text/matematicheskiy_peterburg_2018/
бумажная книга: https://biblio.mccme.ru/node/130275
электронная версия: https://www.mathsoc.spb.ru/history/MathSPb2ed.pdf / https://www.mathedu.ru/text/matematicheskiy_peterburg_2018/
бумажная книга: https://biblio.mccme.ru/node/130275
Библиотека Mathedu.Ru
Математический Петербург: история, наука, достопримечательности. — 2018 // Библиотека Mathedu.Ru
Математический Петербург : история, наука, достопримечательности : справочник-путеводитель / ред.-сост. Г. И. Синкевич ; науч. ред. А. И. Назаров. — 2-е изд., испр. и доп. — СПб. : Образовательные проекты, 2018. — 336 с.
Forwarded from Wild Mathing
🎬 Новое видео о математических бильярдах уже на канале. По мотивам лекции Сергея Маркелова «Открытые проблемы элементарной геометрии». Рекомендую смотреть на крупном экране и с хорошим звуком
#wildmathing #video
#wildmathing #video
Forwarded from Непрерывное математическое образование
Wild Mathing
🎬 Новое видео о математических бильярдах уже на канале. По мотивам лекции Сергея Маркелова «Открытые проблемы элементарной геометрии». Рекомендую смотреть на крупном экране и с хорошим звуком #wildmathing #video
https://www.mathnet.ru/present50
напомним тж. лекцию С.Маркелова «Открытые проблемы элементарной геометрии» на ЛШСМ-2003 (конечно качество картинки и звука там совсем из других времен…)
напомним тж. лекцию С.Маркелова «Открытые проблемы элементарной геометрии» на ЛШСМ-2003 (конечно качество картинки и звука там совсем из других времен…)
Forwarded from Компьютерная математика Weekly (Grigory Merzon)
возьмем какой-нибудь многочлен (от одной переменной) и возведем в большую степень
ну будет непонятное море мономов с большими коэффициентами… но тут уже обсужалось, что полезно сделать в таком случае: построить график
что мы увидим? почему?
под спойлером скрыт пример картинки (конкретно — `list_plot(((2+7*x+x^4+5*x^5)^57).coefficients(),plotjoined=True)`)
(такой иллюстрациейЦПТ поделился Александр Ч. в комментариях у «Кроссворда Тьюринга»)
ну будет непонятное море мономов с большими коэффициентами… но тут уже обсужалось, что полезно сделать в таком случае: построить график
что мы увидим? почему?
под спойлером скрыт пример картинки (конкретно — `list_plot(((2+7*x+x^4+5*x^5)^57).coefficients(),plotjoined=True)`)
(такой иллюстрацией
Forwarded from Непрерывное математическое образование
https://www.mpim-bonn.mpg.de/maninmemorial
конференция памяти Ю.И.Манина (11-15 августа; большинство докладов планируют транслировать)
конференция памяти Ю.И.Манина (11-15 августа; большинство докладов планируют транслировать)
К этому: давным-давно хочу написать про лекцию Дональда Кнута ко дню Пи — про неё несколько лет назад писали коллеги.
И начать хочу с той же задачи, с которой начинает Кнут. Бросим две обычные (честные!) игральные кости. Результат может быть от 2 до 12 очков — но (как известно любому игроку в настольные игры!) шанс выкинуть 7 очков (1/6) гораздо больше, чем выкинуть 2 или 12 очков (1/36). Так вот, вопрос:
Вопрос не такой очевидный — ведь если кинуть монетку, равновероятно падающую сторонами «0» и «1», и независимо от неё «трёхгранную» кость, равновероятно дающую «1», «3», и «5» — то суммарный результат будет равновероятно принимать все значения от 1 до 6 — то есть как раз быть обычной игральной костью.
И это тот сюжет, когда можно достаточно естественно если не придумать, то рассказать характеристические функции для случайных величин.
Пусть у нас есть случайная величина — результат бросания кости — которая принимает неотрицательные целые значения. Её распределение — это то, с какой вероятностью p_n принимается какое значение n. То есть последовательность чисел. А в стандартный — и очень мощный — приём в комбинаторике это превратить последовательность чисел p_n в производящую функцию
F(x) = \sum_n p_n x^n.
В скобках — в этом канале производящие функции уже несколько раз появлялись: вот тут в связи с числами Каталана, вот тут в связи с решёткой Е_8, вот тут в связи с разбиением числа в сумму слагаемых и пентагональной теоремой Эйлера и (чуть ниже) тройным произведением Якоби / предсказанием позитрона Дираком. Первая ссылка, которая мне тут приходит в голову — это отличные «Лекции о производящих функциях» Сергея Константиновича Ландо, насколько я понимаю, потом легшие в основу первой части его же книги «Введение в дискретную математику» (электронная версия / МЦНМО). Но я дальше буду писать так, как будто о производящих функциях мы ничего не знаем.
Так вот — пусть у нас есть две случайные величины: первая принимает значение n с вероятностью p_n, вторая — с вероятностью q_n. Соберём из этих последовательностей производящие функции:
F(x) = \sum_n p_n x^n.
G(x) = \sum_m q_m x^m.
Тогда, если эти случайные величины независимы, вероятность того, что первая приняла значение n, а вторая m, равно p_n q_m; в этом случае сумма принимает значение m+n, и соответствующий вклад в производящую функцию, которую мы сопоставим сумме величин, равен
p_n q_m x^{n+m} = (p_n x^n)* (q_m x^m).
То есть это произведение соответствующих мономов. Значит, производящая функция для распределения суммы независимых случайных величин — это просто произведение производящих функция для распределений слагаемых, F(x)*G(x) !
И начать хочу с той же задачи, с которой начинает Кнут. Бросим две обычные (честные!) игральные кости. Результат может быть от 2 до 12 очков — но (как известно любому игроку в настольные игры!) шанс выкинуть 7 очков (1/6) гораздо больше, чем выкинуть 2 или 12 очков (1/36). Так вот, вопрос:
А нельзя ли сделать такие две кости, чтобы суммарное число очков принимало все значения от 2 до 12 равновероятно?
Вопрос не такой очевидный — ведь если кинуть монетку, равновероятно падающую сторонами «0» и «1», и независимо от неё «трёхгранную» кость, равновероятно дающую «1», «3», и «5» — то суммарный результат будет равновероятно принимать все значения от 1 до 6 — то есть как раз быть обычной игральной костью.
И это тот сюжет, когда можно достаточно естественно если не придумать, то рассказать характеристические функции для случайных величин.
Пусть у нас есть случайная величина — результат бросания кости — которая принимает неотрицательные целые значения. Её распределение — это то, с какой вероятностью p_n принимается какое значение n. То есть последовательность чисел. А в стандартный — и очень мощный — приём в комбинаторике это превратить последовательность чисел p_n в производящую функцию
F(x) = \sum_n p_n x^n.
В скобках — в этом канале производящие функции уже несколько раз появлялись: вот тут в связи с числами Каталана, вот тут в связи с решёткой Е_8, вот тут в связи с разбиением числа в сумму слагаемых и пентагональной теоремой Эйлера и (чуть ниже) тройным произведением Якоби / предсказанием позитрона Дираком. Первая ссылка, которая мне тут приходит в голову — это отличные «Лекции о производящих функциях» Сергея Константиновича Ландо, насколько я понимаю, потом легшие в основу первой части его же книги «Введение в дискретную математику» (электронная версия / МЦНМО). Но я дальше буду писать так, как будто о производящих функциях мы ничего не знаем.
Так вот — пусть у нас есть две случайные величины: первая принимает значение n с вероятностью p_n, вторая — с вероятностью q_n. Соберём из этих последовательностей производящие функции:
F(x) = \sum_n p_n x^n.
G(x) = \sum_m q_m x^m.
Тогда, если эти случайные величины независимы, вероятность того, что первая приняла значение n, а вторая m, равно p_n q_m; в этом случае сумма принимает значение m+n, и соответствующий вклад в производящую функцию, которую мы сопоставим сумме величин, равен
p_n q_m x^{n+m} = (p_n x^n)* (q_m x^m).
То есть это произведение соответствующих мономов. Значит, производящая функция для распределения суммы независимых случайных величин — это просто произведение производящих функция для распределений слагаемых, F(x)*G(x) !
YouTube
Stanford Lecture: Donald Knuth—"Why Pi?"(2010)
Don Knuth's 16th Annual Christmas Tree Lecture
December 6th, 2010
Professor Donald Knuth discusses recent discoveries that have uncovered a fascinating relationship between circles and the theory of trees.
Learn more: http://scpd.stanford.edu/knuth/index.jsp
December 6th, 2010
Professor Donald Knuth discusses recent discoveries that have uncovered a fascinating relationship between circles and the theory of trees.
Learn more: http://scpd.stanford.edu/knuth/index.jsp
Давайте теперь применим это к исходной задаче. Только для простоты уменьшим число очков на каждой из костей на 1: тогда на каждой из них выпадает от 0 до 5 очков, а сумма при независимом подбрасывании должна быть равномерно распределённой от 0 до 10.
Производящая функция для суммы —
(1/11) * (x^10 + … + x + 1),
и с точностью до множителя-константы (1/11) это сумма (конечной) геометрической прогрессии:
(x^11 -1) / (x-1).
В частности, (комплексные) корни этого многочлена мгновенно находятся: это корни 11-й степени из единицы, кроме собственно x=1.
Теперь — сразу видно, что исходные кости не могут быть одинаковыми: иначе производящая функция распределения суммы очков была бы квадратом многочлена, а у нас все корни простые (а должны были бы все быть чётной кратности).
Но и вообще в произведение двух многочленов пятой степени с вещественными коэффициентами нужная производящая функция не раскладывается. Потому что у этих многочленов были бы вещественные корни (они же нечётной степени!), а у нашего произведения все 10 корней — в комплексной области. Всё!
Правда, случай, если кости пяти- или семигранные и могут быть разными, так сделать уже не получится: многочлены, отвечающие костям, уже чётной степени, и в принципе могло бы быть так, что при каком-то разбиении (пар сопряжённых комплексных) корней на две группы многочлен (x^{2N+1}-1)/(x-1) раскладывался бы в произведение двух сомножителей N-й степени с вещественными положительными коэффициентами. Интересно было бы пройти этот путь до конца (скорее всего, аккуратно доказать невозможность — а если это вдруг возможно, то это очень неожиданно), но, каюсь, над этим я почти не думал.
Производящая функция для суммы —
(1/11) * (x^10 + … + x + 1),
и с точностью до множителя-константы (1/11) это сумма (конечной) геометрической прогрессии:
(x^11 -1) / (x-1).
В частности, (комплексные) корни этого многочлена мгновенно находятся: это корни 11-й степени из единицы, кроме собственно x=1.
Теперь — сразу видно, что исходные кости не могут быть одинаковыми: иначе производящая функция распределения суммы очков была бы квадратом многочлена, а у нас все корни простые (а должны были бы все быть чётной кратности).
Но и вообще в произведение двух многочленов пятой степени с вещественными коэффициентами нужная производящая функция не раскладывается. Потому что у этих многочленов были бы вещественные корни (они же нечётной степени!), а у нашего произведения все 10 корней — в комплексной области. Всё!
Правда, случай, если кости пяти- или семигранные и могут быть разными, так сделать уже не получится: многочлены, отвечающие костям, уже чётной степени, и в принципе могло бы быть так, что при каком-то разбиении (пар сопряжённых комплексных) корней на две группы многочлен (x^{2N+1}-1)/(x-1) раскладывался бы в произведение двух сомножителей N-й степени с вещественными положительными коэффициентами. Интересно было бы пройти этот путь до конца (скорее всего, аккуратно доказать невозможность — а если это вдруг возможно, то это очень неожиданно), но, каюсь, над этим я почти не думал.
Математические байки
К этому: давным-давно хочу написать про лекцию Дональда Кнута ко дню Пи — про неё несколько лет назад писали коллеги. И начать хочу с той же задачи, с которой начинает Кнут. Бросим две обычные (честные!) игральные кости. Результат может быть от 2 до 12 очков…
Я обещал естественным образом дойти до характеристических функций. Собственно, осталось совсем чуть-чуть: пока что, если у нас случайная величина ξ могла принимать конечное число неотрицательных целых значений — 0,1,2,… с вероятностями p_0, p_1, p_2,… — мы ей сопоставили многочлен-производящую функцию этих вероятностей,
F_ξ(x) = \sum_n p_n x^n.
И оказалось, что если случайные величины ξ и η независимы, то соответствующие функции перемножаются:
F_{ξ+η}(x) = F_ξ(x) F_η(x).
А что, если у нас случайная величина принимает уже все возможные неотрицательные целые значения? Ничего страшного, теперь F_ξ (x) это уже не многочлен, но всё ещё замечательно определённая при |x|<=1 функция, заданная, как сумма ряда (как раз ряд мажорируется просто суммой вероятностей p_n, равных 1).
А если разрешить все целые значения, включая отрицательные? Берём всё то же самое определение (кстати, давайте его ещё в виде математического ожидания запишем):
F_ξ(z) = \sum_n P(ξ=n) z^n = E z^ξ.
Теперь при |z|<1 из-за отрицательных степеней ряд может и разойтись — но при |z|=1 он опять сходится, а это целая единичная окружность на комплексной плоскости! Ну и все те же самые свойства остаются.
Наконец, остаётся последний шаг. А что, если случайная величина принимает уже любые вещественные значения, не обязательно целые? Даже если бы были рациональные — даже z^{1/2}=\sqrt{z} не будет однозначно определён на комплексной плоскости. Но вот если выбрать логарифм, то будет! А логарифм будет чисто мнимым, потому что |z|=1.
Запишем z=e^{it}, и заменим z^ξ на e^{itξ}. Вот мы и получаем классическое определение характеристической функции,
f_ξ(t):= E e^{itξ},
для которого выполняется всё то же самое замечательное тождество: при сложении независимых случайных величин их характеристические функции перемножаются.
F_ξ(x) = \sum_n p_n x^n.
И оказалось, что если случайные величины ξ и η независимы, то соответствующие функции перемножаются:
F_{ξ+η}(x) = F_ξ(x) F_η(x).
А что, если у нас случайная величина принимает уже все возможные неотрицательные целые значения? Ничего страшного, теперь F_ξ (x) это уже не многочлен, но всё ещё замечательно определённая при |x|<=1 функция, заданная, как сумма ряда (как раз ряд мажорируется просто суммой вероятностей p_n, равных 1).
А если разрешить все целые значения, включая отрицательные? Берём всё то же самое определение (кстати, давайте его ещё в виде математического ожидания запишем):
F_ξ(z) = \sum_n P(ξ=n) z^n = E z^ξ.
Теперь при |z|<1 из-за отрицательных степеней ряд может и разойтись — но при |z|=1 он опять сходится, а это целая единичная окружность на комплексной плоскости! Ну и все те же самые свойства остаются.
Наконец, остаётся последний шаг. А что, если случайная величина принимает уже любые вещественные значения, не обязательно целые? Даже если бы были рациональные — даже z^{1/2}=\sqrt{z} не будет однозначно определён на комплексной плоскости. Но вот если выбрать логарифм, то будет! А логарифм будет чисто мнимым, потому что |z|=1.
Запишем z=e^{it}, и заменим z^ξ на e^{itξ}. Вот мы и получаем классическое определение характеристической функции,
f_ξ(t):= E e^{itξ},
для которого выполняется всё то же самое замечательное тождество: при сложении независимых случайных величин их характеристические функции перемножаются.
Forwarded from Непрерывное математическое образование
Forwarded from Непрерывное математическое образование
Можно ли в кубе проделать отверстие, в которое пройдет куб большего размера? Как ни странно, можно (попробуйте придумать как и/или посмотрите модель etudes.ru/models/prince-Rupert-cube/ Мат. этюдов).
А на сегодняшней картинке из свежего препринта arxiv.org/abs/2508.18475 — первый, говорят, пример выпуклого многогранника, про который получилось доказать, что он «не рупертов» (нельзя проделать дырку, через которую проходит такой же многогранник чуть большего размера).
(В т.ч. все правильные многогранники являются рупертовыми — но даже для правильного тетраэдра это не то что бы очевидно, попробуйте.)
// via Н.Медведь
А на сегодняшней картинке из свежего препринта arxiv.org/abs/2508.18475 — первый, говорят, пример выпуклого многогранника, про который получилось доказать, что он «не рупертов» (нельзя проделать дырку, через которую проходит такой же многогранник чуть большего размера).
(В т.ч. все правильные многогранники являются рупертовыми — но даже для правильного тетраэдра это не то что бы очевидно, попробуйте.)
// via Н.Медведь
Forwarded from Компьютерная математика Weekly (Grigory Merzon)
склеим стороны 2n-угольника попарно 'с сохранением ориентации' (без перекрутки) — какие поверхности могут при этом получиться?
если у квадрата склеивать соседние стороны, то (топологически) получится сфера, если противоположные — тор
если не думали никогда, как склеить подобным образом 'сферу с 2 ручками' (крендель), то полезно, конечно, задуматься
но еще можно задать вопрос про количества: сколькими способами можно склеить из 2n-угольника сферу с g ручками?
для g=0 после склейки граница превратится в плоское дерево (и наоброт, если обойти вокруг дерева, то можно увидеть границу многоугольника, приклееную к этому дерево — по две стороны с разных сторон каждого ребра)
то есть в роде 0 получаются милые многим числа Каталана — а интересно, что происходит дальше
тут повод сделать паузу и задуматься, как же по склейке понять, какая поверхность получается (требуется рецепт, достаточно конкретный, чтобы даже питон понял)
в следующий раз напишу, думаю, как это перебрать на компутере (ну… для небольших n — всего склеек (2n-1)!!, так что особо далеко так не уйдешь)
давно уже хотел это сделать, а тут нашелся повод
если у квадрата склеивать соседние стороны, то (топологически) получится сфера, если противоположные — тор
если не думали никогда, как склеить подобным образом 'сферу с 2 ручками' (крендель), то полезно, конечно, задуматься
но еще можно задать вопрос про количества: сколькими способами можно склеить из 2n-угольника сферу с g ручками?
для g=0 после склейки граница превратится в плоское дерево (и наоброт, если обойти вокруг дерева, то можно увидеть границу многоугольника, приклееную к этому дерево — по две стороны с разных сторон каждого ребра)
то есть в роде 0 получаются милые многим числа Каталана — а интересно, что происходит дальше
тут повод сделать паузу и задуматься, как же по склейке понять, какая поверхность получается (требуется рецепт, достаточно конкретный, чтобы даже питон понял)
в следующий раз напишу, думаю, как это перебрать на компутере (ну… для небольших n — всего склеек (2n-1)!!, так что особо далеко так не уйдешь)
давно уже хотел это сделать, а тут нашелся повод
Все ведь видели, что лунное затмение идёт? (Вот уже прямо сейчас, да!)
На всякий случай: в отличие от солнечного затмения (где нужно оказаться в очень удачном месте), чтобы видеть лунное, достаточно просто видеть Луну! Так что — посмотрите на небо!
(А если Луна у вас ещё не взошла, или прямо сейчас сплошная облачность — можно попробовать посмотреть ещё раз чуть позже, затмение длится несколько часов.)
https://news.1rj.ru/str/astroblog/399
https://www.timeanddate.com/eclipse/lunar/2025-september-7
На всякий случай: в отличие от солнечного затмения (где нужно оказаться в очень удачном месте), чтобы видеть лунное, достаточно просто видеть Луну! Так что — посмотрите на небо!
(А если Луна у вас ещё не взошла, или прямо сейчас сплошная облачность — можно попробовать посмотреть ещё раз чуть позже, затмение длится несколько часов.)
https://news.1rj.ru/str/astroblog/399
https://www.timeanddate.com/eclipse/lunar/2025-september-7
Telegram
AstroBlog 🌖
Совсем скоро начнется полное лунное затмение: Луна погрузится в тень Земли целиком, и это можно будет наблюдать невооруженным глазом.
Из города тоже наблюдать получится: засветка не помешает, достаточно просто смотреть на небо.
СМИ любят писать о «кровавой…
Из города тоже наблюдать получится: засветка не помешает, достаточно просто смотреть на небо.
СМИ любят писать о «кровавой…
Forwarded from Компьютерная математика Weekly (Grigory Merzon)
знаете ли вы, как выглядит график синуса?
если да, то подумайте, какую картинку должен выдать код ниже… а потом посмотрите под спойлером на реальный результат
// из статьи П.Панова «Как выглядит график синуса?» в Кванте №3 за 2020 год — via С.Дориченко
если да, то подумайте, какую картинку должен выдать код ниже… а потом посмотрите под спойлером на реальный результат
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(-10, 10, 0.001)
y = np.sin(314*x)
plt.plot(x,y, marker='.', linestyle='none')
plt.show()
// из статьи П.Панова «Как выглядит график синуса?» в Кванте №3 за 2020 год — via С.Дориченко
Компьютерная математика Weekly
знаете ли вы, как выглядит график синуса? если да, то подумайте, какую картинку должен выдать код ниже… а потом посмотрите под спойлером на реальный результат import numpy as np import matplotlib.pyplot as plt x = np.arange(-10, 10, 0.001) y = np.sin(314*x)…
К вот этому — из схожих историй.
1) Давайте возьмём бумагу в клеточку и раскрасим клетки шахматным образом. А теперь возьмём два таких листа и наложим один из них на другой. Лучше всего — взяв верхний лист не из обычной бумаги, а из прозрачки [прозрачной плёнки для проектора]; ещё можно взять не слишком толстую бумагу, и смотреть на яркий свет на просвет, но так хуже видно. (На бумаге можно распечатать вот эту картинку.)
Пока листы наложены друг на друга без сдвига — ничего интересного не происходит. А что будет, если их начать вращать?
Вот тут — анимированная гифка с ответом. Мне это когда-то вживую показывал Тадаси Токиеда, и это смотрелось очень круто!
2) Ниже — фотография одного моста. Обратите внимание на узор, который возникает на ограде; к нему приводит тот же эффект.
1) Давайте возьмём бумагу в клеточку и раскрасим клетки шахматным образом. А теперь возьмём два таких листа и наложим один из них на другой. Лучше всего — взяв верхний лист не из обычной бумаги, а из прозрачки [прозрачной плёнки для проектора]; ещё можно взять не слишком толстую бумагу, и смотреть на яркий свет на просвет, но так хуже видно. (На бумаге можно распечатать вот эту картинку.)
Пока листы наложены друг на друга без сдвига — ничего интересного не происходит. А что будет, если их начать вращать?
Вот тут — анимированная гифка с ответом. Мне это когда-то вживую показывал Тадаси Токиеда, и это смотрелось очень круто!
2) Ниже — фотография одного моста. Обратите внимание на узор, который возникает на ограде; к нему приводит тот же эффект.
Математические байки
К вот этому — из схожих историй. 1) Давайте возьмём бумагу в клеточку и раскрасим клетки шахматным образом. А теперь возьмём два таких листа и наложим один из них на другой. Лучше всего — взяв верхний лист не из обычной бумаги, а из прозрачки [прозрачной…
Вживую — распечатал в двух экземплярах (с уменьшением, чтобы область можно было хорошо прижимать рукой), плотно приложил один лист к другому, и оба к окну. Эффект (под спойлером) вполне виден.
Forwarded from Квантик
КВАНТИК ФЕСТ 2025
Дорогие друзья, открыта регистрация на Фестиваль журнала «Квантик», который уже в пятый раз пройдёт в Новой школе! В этом году КвантикФест состоится в субботу, 27 сентября, с 12:00 до 17:00.
Фестиваль журнала «Квантик» — отличная возможность получить новые знания через игру. В основном мероприятие рассчитано на учеников 2−8 класса, но мы уверены, что интересное для себя найдут и малыши, и более взрослые участники.
Участие в Фестивале бесплатное. Зарегистрироваться можно по ссылке: https://home.n.school/quantica_festival
Фестиваль откроет традиционная лекция главного редактора журнала «Квантик», Сергея Дориченко. Далее вас ждут игротека «Квантика», игры «Мышематики» от Жени Кац, головоломки Владимира Красноухова и Сергея Полозкова, которые представят сами авторы, станции от учителей Новой школы, книжная ярмарка издательства МЦНМО и многое другое!
Приглашаем школьников, их родителей и учителей!
Дорогие друзья, открыта регистрация на Фестиваль журнала «Квантик», который уже в пятый раз пройдёт в Новой школе! В этом году КвантикФест состоится в субботу, 27 сентября, с 12:00 до 17:00.
Фестиваль журнала «Квантик» — отличная возможность получить новые знания через игру. В основном мероприятие рассчитано на учеников 2−8 класса, но мы уверены, что интересное для себя найдут и малыши, и более взрослые участники.
Участие в Фестивале бесплатное. Зарегистрироваться можно по ссылке: https://home.n.school/quantica_festival
Фестиваль откроет традиционная лекция главного редактора журнала «Квантик», Сергея Дориченко. Далее вас ждут игротека «Квантика», игры «Мышематики» от Жени Кац, головоломки Владимира Красноухова и Сергея Полозкова, которые представят сами авторы, станции от учителей Новой школы, книжная ярмарка издательства МЦНМО и многое другое!
Приглашаем школьников, их родителей и учителей!
Forwarded from Непрерывное математическое образование
https://math.hse.ru/announcements/1085274889.html
в понедельник 22.09 в 16:20 на Матфаке ВШЭ (ауд. 427) — А.Ю.Окуньков. Старое и новое о квантовых группах в задачах исчислительной геометрии
Доклад будет введением в круг вопросов, о которых я планирую поговорить на спецкурсе в весеннем семестре. Многие возможно уже слышали, что геометрическая теория представлений позволяет довольно явно решить много задач исчислительной геометрии. В недавнее время, в этой области возникли как новые технические средства, так и новые задачи. Поэтому представляется осмысленным переизложить старую теорию в духе времени. Это будет целью спецкурса, а целью доклада будет понятно объяснить, о чем тут идет речь.
в понедельник 22.09 в 16:20 на Матфаке ВШЭ (ауд. 427) — А.Ю.Окуньков. Старое и новое о квантовых группах в задачах исчислительной геометрии
Доклад будет введением в круг вопросов, о которых я планирую поговорить на спецкурсе в весеннем семестре. Многие возможно уже слышали, что геометрическая теория представлений позволяет довольно явно решить много задач исчислительной геометрии. В недавнее время, в этой области возникли как новые технические средства, так и новые задачи. Поэтому представляется осмысленным переизложить старую теорию в духе времени. Это будет целью спецкурса, а целью доклада будет понятно объяснить, о чем тут идет речь.