Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
Forwarded from Кроссворд Тьюринга (Vanya Yakovlev)
Заглянул на новый сайт Кванта

Редакция проделала громадную работу: старые номера отсканированы заново, поиск теперь работает по всему архиву, а некоторые тексты можно читать прямо на странице — выглядит красиво и удобно. Всё это очень радует: читать «Квант» стало ещё приятнее.

А в свежем номере нашёл замечательную статью Болотина — «Математика игры Сет». Короткий и увлекательный текст о том, как в знакомой карточной игре неожиданно прячется интересная комбинаторика и геометрия. Автор начинает с основ — описывает карты как вектора, а «сеты» как решения простого уравнения. Это позволяет по-новому взглянуть на механику Сета и ответить на ряд любопытных вопросов.

Главная задача такая: если в игре не 4, а n признаков, то среди какого наибольшего набора карт нет ни одного сета?

Отличный повод заглянуть на сайт «Кванта» и оценить, как он теперь прекрасно выглядит.
Единственный в своем роде математический парк в Майкопе. Кое-что на улице, а ещё больше очень клёвых демонстраций внутри. Можно даже руками хватать.
Кофейный теоретик
Единственный в своем роде математический парк в Майкопе. Кое-что на улице, а ещё больше очень клёвых демонстраций внутри. Можно даже руками хватать.
Митя Филимонов пишет:
На ВДНХ есть очень неплохая лента Мёбиуса огромных размеров
https://vdnh.ru/places/landshaftnyy-attraktsion-lenta-mebiusa/

Мы по ней ходили, очень мило - она в сечении буква H, то есть такой рельс, и к этому рельсу прикручена пешеходная дорожка. Начинаешь идти с одной стороны от ленты, проходишь полный круг и оказываешься с другой. Из-за размеров, не успеваешь заметить, как она плавно проворачивается. В общем, хорошо сделано.
Forwarded from fp math (Fedor Petrov)
Взаимное расположение корней многочлена и его производной давно интересует математиков, и в целом там всё непросто. В своё время я пытался доказать гипотезу де Брёйна — Шпрингера, что у любой выпуклой функции среднее по корням многочлена не меньше, чем по корням производной, и ничего у меня не вышло — а вскоре после этого вышло у Сени Маламуда, и так умно и коротко, что я до сих пор офигеваю. Потом оказалось, что то же параллельно сделал Раджеш Перейра — вот почему так постоянно происходит, что 55 лет никто не мог доказать, а потом одновременно доказали сразу двое?
Forwarded from Геометрия-канал (knamprihodilinoneseichas knamprihodilinoneseichas)
В этом году проводится заочный конкурс Турнира городов. Что это такое можно узнать на сайте. На том же сайте уже выложены два набора конкурсных задач в стиле проекта ЛКТГ (Если решить много задач, то можно пройти на саму ЛКТГ). Оба проекта по геометрии. Один продолжает проект с последней ЛКТГ Инварианты Понселе в свете Cool ratio lemma, второй же посвящён Теореме Дезарга об Инволюции, если вы давно хотели узнать что это такое и порешать на это какие-то задачки, то кажется это хороший способ это сделать)

Задачи конкурса.
1. Инварианты Понселе в свете Cool ratio lemma
2. Теореме Дезарга об Инволюции
Вчера из окна поезда видел гало; послал фото Коле Андрееву, немедленно получил в ответ ссылку — https://www.kvant.digital/issues/?query=%D0%B3%D0%B0%D0%BB%D0%BE
Так я узнал, что на новом сайте Кванта есть полнотекстовый поиск по всем старым номерам. :)
А также, что при клике на соответствующие номера в поиске искомые слова в тексте подсвечиваются — что постфактум логично и удобно, но об этом тоже надо было подумать; респект тем, кто это всё делал!
Математические байки
Вчера из окна поезда видел гало; послал фото Коле Андрееву, немедленно получил в ответ ссылку — https://www.kvant.digital/issues/?query=%D0%B3%D0%B0%D0%BB%D0%BE Так я узнал, что на новом сайте Кванта есть полнотекстовый поиск по всем старым номерам. :) А…
Давайте я чуть-чуть добавлю — почему это именно гало, а не радуга. Радуга получается из-за преломления и отражения света в капельках-шариках воды. При этом вообще-то, в зависимости от того, как именно луч входит в шарик, угол, на который преломление и отражение его повернёт, может быть совершенно разным. (Проще всего отсчитывать угол от направления, обратного направлению входа — так отразится луч, прошедший через центр капли.)
Так вот — угол поворота в зависимости от не-центральности входа луча в каплю может быть совершенно разным. Но. У функции «угол поворота в зависимости от места входа в каплю» есть точка максимума. И это значит, что в этом направлении уйдёт гораздо больше лучей, чем во всех остальных!

Гораздо больше — потому что в этом направлении плюс-минус δ идут лучи из «окна входа» размера порядка корень из δ. А для любого другого направления размер окна тоже порядка δ. И корень из δ много больше δ.
Ну и — из-за того, что значение коэффициента преломления зависит от цвета (хорошо, от длины волны 🙂 ), от него зависит и значение этого максимума: красный цвет поворачивает на 42 градуса от обратного направления, а другие чуть-чуть меньше. Вот мы и видим (главную) радугу — образующую дугу с углом ~42 градуса вокруг направления, противоположного направлению на Солнце.

У Математических Этюдов есть прекрасный ролик об этом — https://etudes.ru/etudes/rainbow/ .
Математические байки
Давайте я чуть-чуть добавлю — почему это именно гало, а не радуга. Радуга получается из-за преломления и отражения света в капельках-шариках воды. При этом вообще-то, в зависимости от того, как именно луч входит в шарик, угол, на который преломление и отражение…
Несколько скриншотов со страницы ролика МатЭтюдов про радугу — максимум для красного цвета, близкий, но другой, для оранжевого, комментарий про максимум, собирающиеся в радугу лучи от разных капелек, и итоговая дуга радуги
(Image credit: https://etudes.ru/etudes/rainbow/ )
Математические байки
Вчера из окна поезда видел гало; послал фото Коле Андрееву, немедленно получил в ответ ссылку — https://www.kvant.digital/issues/?query=%D0%B3%D0%B0%D0%BB%D0%BE Так я узнал, что на новом сайте Кванта есть полнотекстовый поиск по всем старым номерам. :) А…
Так вот — радуга это 42 градуса от направления, обратного направлению на Солнце. А на первом фото радужный отблеск в небе довольно близко к направлению на Солнце (оно справа на том же фото), так что радугой это быть не может. Так что это гало — получающееся из преломления света в кристалликах льда.