Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
Заслуживающей отдельного рассказа самой по себе – чего стоят одни ролики анимаций, которые к ней "прикручены".
Но это будет как-нибудь в другой раз — тут есть красивый рассказ про то, почему пространство решёток на комплексной плоскости это C^2 без кривой {z^2=w^3}, что эта кривая высекает на единичной сфере узел-трилистник, и это именно тот самый трилистник, который появляется на постере, что фундаментальная группа дополнения к нему это группа кос B_3, потому что корни кубического уравнения, и так далее — но это надо писать вдумчиво, так что как-нибудь в другой раз.
А чтобы завершить вечер картинок — фреска в UMPA ENS Lyon:
Она большая, во всю стену (так что слева на фотографии — это дверь), и с кучей математических сюжетов.
Правильные многогранники и (двоичные?) деревья, конечно, бросаются в глаза.
А вот что воздушный шар раскрашен под расслоение Хопфа — уже нужно заметить.
Солнце (которое, правда, не очень видно) раскрашено под универсальную накрывающую сферы Римана без трёх точек — которая есть диск (а треугольники "с вершинами на абсолюте" переходят в верхнюю и нижнюю полуплоскости, в зависимости от раскраски).
Лента справа завивается дорожкой вихрей Кармана — https://en.wikipedia.org/wiki/K%C3%A1rm%C3%A1n_vortex_street .
А верёвка завязывается в дикий узел (https://en.wikipedia.org/wiki/Wild_knot )
Ну и последнее на сегодня — а вот эти постеры висят у нас в Ренне на лестнице:
http://sorciersdesalem.math.cnrs.fr/Posters/posters.html
Там сильно больше комментариев — правда, они по-французски...
Ну и на этом я рассказ "о красивых картинках", наверное, завершу.
В продолжение темы про узлы — байка про трёхцветные раскраски.
Как можно доказывать, что узел (формально, вложение окружности в R^3) нельзя развязать? Или что два узла различны?
Самый естественный подход — нужен какой-нибудь инвариант. И почти всегда инвариант строится не по узлу в R^3, а по его диаграмме — "узлу, вид сверху".
Вот взятая из Википедии таблица узлов с небольшим числом перекрёстков:
Так вот, самый простой в определении инвариант — это число правильных трёхцветных раскрасок.
А именно, раскрасим диаграмму узла в три цвета (красный, синий, зелёный) — раскрашивая каждую связную компоненту (от одного ныряния "под" перекрёсток до другого) в один цвет.

Определение: раскраска называется правильной, если для каждого перекрёстка (в котором встречаются две "ныряющие вниз" компоненты и одна, проходящая поверху) мы в нём видим либо все три цвета, либо только один.
Пример: правильная раскраска трилистника (image credit: Wikipedia)