Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
Начав в конкретной точке (например, (0,...,0)) — мы на каждом шагу с вероятностью 1/101 переходим по каждому из возможных рёбер, а ещё с вероятностью 1/101 остаёмся на месте. Иными словами, мы либо меняем один из разрядов нашего 100-значного двоичного слова, либо (с небольшой вероятностью) не делаем ничего.

После того, как мы сделаем такое где-нибудь 10000 раз, каждый разряд мы поменяли в среднем около сотни раз. И "ежу понятно" (хотя, конечно, надо доказывать!), что на такой куче "перещёлкиваний" мы получили уже почти-совсем-случайное распределение.
Казалось бы, отсюда можно получить уже готовый рецепт генерации (почти) случайного разбиения ацтекского бриллианта. А именно: мы знаем, что граф с вершинами-разбиениями связен относительно перестроек квадратиков. Берём какое-нибудь фиксированное начальное разбиение, например, просто все доминошки ставим вертикально. И на каждом шаге выбираем случайный квадрат 2x2. Если его можно перестроить — перестраиваем. Если нельзя — не трогаем. Как раз получается добавление фальшивых рёбер (ибо теперь у нас из каждой вершины исходит одно и то же их количество — просто многие ведут в неё же).
Вот пример такой симуляции (за эти картинки спасибо И. Батманову и К. Люборту):
первая перестройка —
вторая —
третья —
20-я —
(кстати, видно, что один из квадратиков "развернулся обратно")
40-я — пары горизонтальных доминошек посередине уже порождают вертикальные другой чётности
это уже 100-я — волна перестроек "расползается"
Это была 500-я
1500-я: