ВШМ МФТИ – Telegram
ВШМ МФТИ
1.16K subscribers
115 photos
1 video
10 files
153 links
Неофициальный канал Высшей школы современной математики
Download Telegram
Вчера профессор Университета Торонто и BIMSA Константин Ханин провел для первокурсников ВШМ внеочередной ориентационный семинар «Современная математика», на котором рассказал о развитии теории динамических систем, KPZ-универсальности и ренормализации в математической статистической механике, но главное — о том, как может быть устроен путь молодого математика в науке.

А сегодня в 18:00 на матфаке ВШЭ (ул. Усачева, 6, ауд. 108) Константин Ханин выступает с докладом «Another look at the KPZ problem», в котором речь пойдет о статистическом поведении геодезических случайной римановой метрики на плоскости — альтернативном, геометрическом подходе к KPZ-универсальности.

KPZ — это Кардар, Паризи, Жанг, а не Книжник, Поляков, Замолодчиков! Это был тест на то, вы статфизик или квантовый полевик.
👍15
Комбинаторика и топологиясовместный семинар ВШМ и лаборатории комбинаторных и геометрических структур ФПМИ МФТИ

Когда: суббота 4 октября, 13:55
Где: Административный корпус, ауд.322

Доклад:

А.В.Мирошников (МФТИ),
"Инварианты почти вложений графов в плоскость"

Изображение графа на плоскости называется почти вложением, если образы любых двух несмежных симплексов (т.е. вершин или ребер) не пересекаются.

Мы определим целочисленные характеристики почти вложений: оборотные, триодические и циклические числа. Мы опишем все соотношения между этими числами для почти вложения f графа K_4 и сформулируем некоторые результаты для почти вложений других графов.

Например, для каждой из четырех вершин v графа K_4 рассмотрим число оборотов f-образа цикла, полученного удалением v из K_4, вокруг f(v). Тогда сумма этих четырех чисел нечетна. Причем других соотношений на эти числа оборотов для почти вложений графа К_4 нет.

Некоторые из соотношений -- суть гомологичность некоторых циклов в некотором конфигурационном пространстве, связанного с графом.

Лекция будет доступна первокурснику. Все понятия будут определены. Имеются интересные примеры и направления для дальнейшего исследования.


Страница семинара: https://old.mccme.ru/ium/s23/ryabichev/f25-mipt-topkomb.html
Трансляции семинара не планируется, но, возможно, мы выложим запись.

#ВШМ_ФПМИ_топкомб
👍5😁1
Семинар «Алгебра, геометрия и теория чисел»

Когда: суббота 4 октября
Где: 322 АдмК

Учебный трек (16:00): М. Дусман "Мотивная теория гомотопий (часть II)"

Во второй части доклада продолжим обсуждение мотивной теории гомотопий. Начнем с определения функтора замены базы, затем обсудим "сферы", естественно появляющиеся в мотивных пространствах, и пространство Тома. Далее обратим внимание на "склейку": т.е. что можно восстановить о пространстве, при замене базы на замкнутую подсхему и ее дополнение. В оставшееся время обсудим построение спектров мотивных пространств и стабильную теорию гомотопий

Современный трек (18:00): А. Айвазьян "Что такое ∞-стек?"

Категория пучков Sh(C, J) на сайте (C, J) — это локализация категории предпучков PSh(C) в определённом классе мономорфизмов J (называемых покрывающими решетами). Возникающие таким образом категории, называемые топосами Гротендика, играют ключевую роль в современной алгебраической геометрии и смежных темах. Когда C — это категория пространств, о пучках можно думать как об обобщённых пространствах.

Однако на рубеже XX–XXI веков «гомотопическая революция» привела к развитию таких областей, как мотивная теория гомотопий, производная алгебраическая геометрия (в последние 10 лет нужно также упоминать как минимум конденсированную математику и производную дифференциальную геометрию), объекты которых обладают свойствами, несовместимыми с рассмотрением их в фреймворке 1-категорий. Самый классический пример — это пространства, точки которых имеют естественные симметрии (такие как орбифолды и пространства модулей), то есть являются группоидом, а не просто множеством. Обобщение пучка со значением в группоидах (вместо множеств) называется стеком, а в ∞-группоидах («пространствах» в терминологии Лури) — ∞-стеком. В докладе я расскажу точное определение, примеры и базовые свойства ∞-стеков.

В зависимости от подготовки аудитории изложение может начаться с напоминаний о классических 1-пучках на сайтах и о (∞, 1)-категориях.

Аннотации прошедших докладов, а также обновления по предстоящим, доступны в таблице https://docs.google.com/spreadsheets/d/1mk-KpzO7tOFuptWrFZbed6atLEqWxbRlgrWthil66kE/edit?usp=drivesdk

Присоединяйтесь к ТГ группе семинара.

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.

#ВШМ_АГТЧ
👍42
Семинар Добрушинской лаборатории

Когда:
вторник 7 октября, 16:15
Где: Адм.корпус, ауд.322.

Доклад:

Аршак Айвазьян (МФТИ),
"Схемная дифференциальная геометрия//Schematic differential geometry"

Хорошо известно, что гладкое многообразие M восстанавливается из своего кольца гладких функций C^\infy(M). Но алгебраические конструкции с коммутативными кольцами не отражают геометрических конструкций с соответствующими гладкими многообразиями: коммутативная алгебра соответствует алгебраической геометрии, а не дифференциальной (и кольца гладких функций многообразий с полиномиальной перспективы большие и патологические).

Но C^\infy(M) --- это не просто коммутативные кольца, они имеют естественную дополнительную структуру: к набору элементов f_1, ..., f_n можно применить любую гладкую функцию a: R^n -> R, а не только полином. Множества, снабженные такой алгебраической структурой (расширяющей структуру коммутативного кольца), называются C^\infy-кольцами и конструкции с ними в точности соответствуют конструкциям с соответствующими гладкими многообразиями!

Объекты дуальной категории к C^\infy-кольцами называются гладкими локусами (аналог аффинных схем) и включают гладкие многообразия как полную подкатегорию. Схемная гладкая геометрия предлагает ряд приятных унификаций и преимуществ, по сравнению с традиционной перспективой. В докладе будет дан обзор её особенностей, а в конце мы кратко поговорим о дальнейшем развитии языка и потенциальных приложениях.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Если у вас нет пропуска МФТИ, то на входе сообщайте, что идёте на наш семинар, и не забудьте паспорт.


#ВШМ_Добрушинский
👍81
Стенд ВШМ сегодня перед началом Физтех.Гравитации...

...и за следующие пять часов вся команда стенда была настолько занята, что у нас больше нет ни одной фотографии 🙈 Все это время мы без остановки отвечали на вопросы посетителей фестиваля — абитуриентов Физтеха, их родителей и даже коллег с других физтех-школ.

Тираж буклета ВШМ разлетелся за первый час, и после этого на стенд выложили листки с задачами из Независимого Московского университета, которые наши студенты решают и сдают на занятиях. Кто-то пугался и убегал в ужасе, а кто-то заинтересованно читал и расспрашивал о них.

В программу фестиваля вошло выступление директора ВШМ в Большой химической аудитории, в котором были впервые раскрыты два изменения правил приема в бакалавриат ВШМ в 2026 году:

🔹у нас будет 15 бюджетных и 3 платных места;
🔹право БВИ, кроме ПиПов ВсОШ по математике, получат также победители за 11 класс трех математических олимпиад: Московской, Санкт-Петербургской и Турнира городов.

А еще у нас на стенде можно было угоститься печенькой и поиграть в го.

В этот осенний воскресный день с вами были студенты 1 курса ВШМ Михаил Гарковенко, Яна Пальчикова, Данила Тонконогов, Иван Фадеев, Екатерина Шерстнева, Константин Щербаков и директор ВШМ Андрей Соболевский.

Если у вас остались вопросы, задавайте их в комментариях к этой и другим публикациям нашего канала. До встречи на весеннем Дне открытых дверей МФТИ!
20❤‍🔥6👍3🔥3
Логический семинар лаборатории им. Манина Высшей школы современной математики

Когда: среда 8 октября, 14:00
Где: Адм. корпус, ауд.322.

Доклад:

В.Б. Шехтман,
"Топологическая полнота и полнота по Крипке для суперинтуиционистских логик"

В 1974 г. А.В. Кузнецов сформулировал несколько проблем о полноте суперинтуиционистских логик высказываний в различных семантиках. Часть этих проблем впоследствии была решена.

В докладе обсуждается одна из них: соотношение полноты по Крипке и топологической полноты.

Строится явный пример конечно аксиоматизируемой логики, для которой пополнение в топологической xсемантике неполно по Крипке.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/00084330909943
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страница семинара:
https://www.mathnet.ru/rus/conf2559

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Если у вас нет пропуска МФТИ, то на входе сообщайте, что идёте на наш семинар, и не забудьте паспорт.


#ВШМ_логический
5👍2
Семинар «Алгебра, геометрия и теория чисел»

Когда: суббота 11 октября
Где: 322 АдмК

Учебный трек (16:00): В. Волков "А¹-топология над полем"

В докладе начнём обсуждение свойств гомотопических пучков $\pi_n^{\mathbb{A^1}}$, их сильную $\mathbb{A^1}$-инвариантность. Построим аналоги классических теорем и конструкций из алгебраической топологии для мотивного случая. Построим длинную точную последовательность гомотопических пучков, пространства Эйленберга-Маклейна. Докажем мотивную теорему Гуревича и полезные свойства из неё. Если останется время обсудим связь $\mathbb{A}^1$-накрытий и фундаментального пучка $\pi_1^{\mathbb{A}^1}$ c целью дальнейшего её приложения для вычисления конкретных $\mathbb{\mathbb{A}^1}$-фундаментальных пучков групп.

Аннотации прошедших докладов, а также обновления по предстоящим, доступны в таблице https://docs.google.com/spreadsheets/d/1mk-KpzO7tOFuptWrFZbed6atLEqWxbRlgrWthil66kE/edit?usp=drivesdk

Присоединяйтесь к ТГ группе семинара.

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.

#ВШМ_АГТЧ
🔥8
Комбинаторика и топологиясовместный семинар ВШМ и лаборатории комбинаторных и геометрических структур ФПМИ МФТИ

Когда: суббота 11 октября, 13:55
Где: Административный корпус, ауд.322

Доклад:

А.В.Мирошников (МФТИ),
"Инварианты почти вложений в плоскость, часть 2"

Перед этим семинаром полезно ознакомиться с содержанием первого семинара.

На прошлом семинаре мы определили целочисленные характеристики (инварианты) почти вложений: оборотные, циклические и триодические числа; мы привели примеры соотношений между этими числами для конкретных графов. Нестрого говоря, эти соотношения бывают двух видов:
1) те, что приходят из структуры графа;
2) те, что приходят из геометрии почти вложений.
Для доказательств соотношений первого вида "не нужно" помнить ни о суммах углов, через которые определены инварианты; ни о самом почти вложении.

Мы формализуем данное замечание: определим группу на множестве циклов в произвольном графе и конфигурационное пространство (граф), циклы в котором соответствуют упомянутым выше инвариантам.

После рассказа продолжим семинар в свободной форме.


Страница семинара: https://old.mccme.ru/ium/s23/ryabichev/f25-mipt-topkomb.html
Трансляции семинара не планируется, но, возможно, мы выложим запись.

#ВШМ_ФПМИ_топкомб
1
Студенты ВШМ получили премию Phystech-Alpha

Phystech-Alpha — это благотворительная программа Союза выпускников Физтеха, по которой каждый год первокурсники могут получить ноутбук в качестве приза за рассказ о своем пути на Физтех.

В 2025 году премия Phystech-Alpha вручается 92 первокурсникам. Среди них 73 студента получают ноутбуки и еще 19 — планшеты .

Среди лауреатов премии два студента ВШМ: Данила Тонконогов и Екатерина Шерстнева. Поздравляем!
23🏆2👨‍💻1
Семинар Добрушинской лаборатории

Когда:
вторник 14 октября, 16:15
Где: Адм.корпус, ауд.322.

Доклад:

Роман Карасев (МФТИ),
"Тензорный ранг детерминанта и нижние оценки на количество граней триангуляции // Tensor rank of the determinant and lower bounds on the number of faces of a triangulation"

Мы (совместно с Сергеем Аввакумовым) доказываем нижние оценки на количество граней симплициальных комплексов и более экономных триангуляций пространств с нетривиальным произведением в когомологиях. Формула для умножения когомологий из учебника даёт некоторое представление умножения в когомологиях в виде суммы произведений линейных функционалов. Для коэффициентов по модулю 2 из неё с помощью вероятностных соображений следует, что граней соответствующей размерности не менее 2^n при наличии ненулевого произведения длины n. Для рациональных коэффициентов мы задействуем результаты о тензорном ранге тензора-детерминанта и получаем оценки получше. В последнем случае не исключено, что после некоторой доработки нижняя оценка окажется суперэкспоненциальной по n.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Если у вас нет пропуска МФТИ, то на входе сообщайте, что идёте на наш семинар, и не забудьте паспорт.


#ВШМ_Добрушинский
❤‍🔥5
Семинар «Алгебра, геометрия и теория чисел»

Когда: суббота 18 октября
Где: 322 АдмК

Учебный трек (16:00): Ф.Вылегжанин "Примеры подсчета мотивных гомотопических пучков"

Топологию гладкого торического многообразия X можно изучать так: конструкция Батырева-Кокса представляет X как (A^m\C)/G, где C — объединение координатных подпространств, а G — свободно действующий расщепимый алгебраический тор; дальше пространство A^m\C исследуется, например, методами теории полиэдральных произведений [3].
Мы обсудим "первую нетривиальную гомотопическую группу" X в классической и мотивной топологии [2] с акцентом на методы, которые потенциально применимы к дополнениям до других подмножеств [1].
Литература:
[1] Asok, Doran (https://arxiv.org/abs/0902.1564 )
[2] Wendt (https://doi.org/10.1016/j.aim.2009.08.004 ),
[3] Theriault (http://dx.doi.org/10.1142/9789813226579_0001 )

Современный трек (18:00): А.Мятелин "Мотивная стабильная теория гомотопий и алгебраические кобордизмы"

Будет построена мотивная стабильная гомотопическая категория SH(k), после чего обсудим аналоги различных конструкций из стабильной теории гомотопий. Особое внимание будет уделено конструкции мотивного спектра алгебраических кобордизмов по Морелю-Воеводскому и альтернативному подходу через ориентированные теории когомологий на схемах по Морелю-Левину. Оказывается, что для алгебраических кобордизмов верны многие свойства, выполняющиеся для спектра комплексных кобордизмов в классической теории гомотопий. Ожидается, что алгебраические кобордизмы могут найти применение в мотивной теории узлов.

Аннотации прошедших докладов, а также обновления по предстоящим, доступны в таблице https://docs.google.com/spreadsheets/d/1mk-KpzO7tOFuptWrFZbed6atLEqWxbRlgrWthil66kE/edit?usp=drivesdk

Присоединяйтесь к ТГ группе семинара.

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.

#ВШМ_АГТЧ
🔥7
Семинар Добрушинской лаборатории

Когда:
вторник 21 октября, 16:15
Где: Адм.корпус, ауд.322.

Доклад:

Андрей Делицын (МФТИ),
"Операторы типа Пуанкаре-Стеклова в задаче о резонансном рассеянии // Poincare-Steklov type operators in the problem of resonant scattering"

Если перегородить трубу, по которой бежит звуковая волна, перегородкой, в которой оставлено малое отверстие, то практически весь звук отразится, и только ничтожная его часть пройдет за перегородку. Если, однако, на некотором расстоянии от первой перегородки поставить точно такую же — с симметрично расположенным отверстием, то на некоторой частоте вместо отражения будет иметь место практически полное прохождение падающей волны. Аналогичным образом, если к цилиндру присоединить через малое отверстие некоторую конечную область, то практически полное прохождение падающей волны на определенной частоте будет сменяться ее отражением. Математически задача формулируется как задача рассеяния для уравнения Гельмгольца в деформированном цилиндре. Рассматривается применение к данной задач операторов типа Пуанкаре-Стеклова, позволяющее дать очень простое доказательство эффекта резонансного рассеяния для ряда областей составленных из конечных и бесконечных цилиндров. Метод допускает распространение на более общие классы областей, полученные при определенной деформации цилиндров.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Если у вас нет пропуска МФТИ, то на входе сообщайте, что идёте на наш семинар, и не забудьте паспорт.


#ВШМ_Добрушинский
5
Логический семинар лаборатории им. Манина Высшей школы современной математики

Когда: среда 22 октября, 14:00
Где: ОНЛАЙН, с трансляцией в Адм. корпусе, ауд.322.

Доклад:

Д.П.Шкатов (Университет Йоханнесбурга, ЮАР),
"Введение в семантику первопорядковых модальных логик"

Будут разъяснены основные понятия семантики Крипке для предикатных модальных логик. Предполагается знакомство слушателей с пропозициональными модальными логиками, хотя основные понятия, касающиеся этих логик, будут кратко напомнены.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/00084330909943
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страница семинара:
https://www.mathnet.ru/rus/conf2559

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Если у вас нет пропуска МФТИ, то на входе сообщайте, что идёте на наш семинар, и не забудьте паспорт.


#ВШМ_логический
2
Комбинаторика и топологиясовместный семинар ВШМ и лаборатории комбинаторных и геометрических структур ФПМИ МФТИ

Когда: пятница 24 октября, 15:25
Где: Главный корпус, ауд.430

Доклад:

Михаил Блудов (МФТИ),
"Сбалансированные наборы, их топологические свойства и цветная теорема Каратеодори"

Пусть у нас есть конечный набор точек в евклидовом пространстве. Подмножество этого набора будем называть сбалансированным, если его выпуклая оболочка содержит 0. Сбалансированные и несбалансированные наборы имеют множество эквивалентных формулировок и встречаются в разных областях математики. Относительно недавно появился интерес к топологическим свойствам этих наборов. Например, ясно, что семейство несбалансированных наборов образует симплициальный комплекс. Теперь, пусть нам дан набор точек в d-мерном пространстве, такой что его выпуклая оболочка является d-мерным многогранником, и при этом 0 лежит внутри этого многогранника. Тогда комплекс несбалансированных наборов является сферой размерности (d-1). Эта теорема была обнаружен докладчиком в контексте изучения теорем о покрытиях типа KKM.

Независимо эта теорема была получена Павле Благоевичем в работе ''A Colorful Version of Carathéodory's Theorem plus a constraint'' (https://arxiv.org/abs/2509.01000) в контексте изучения цветной теоремы Каратеодори и её обобщений. Саму же цветную теорему Каратеодори можно понимать как некоторое утверждение о сбалансированных наборах.

Во время доклада планируется обсудить доказательство упомянутой теоремы о комплексе несбалансированных наборов. Также планируется обсудить работу П. Благоевича, какие-то ещё топологические свойства сбалансированных наборов, возможные дальнейшие обобщения и направленичя исследований.


Страница семинара: https://old.mccme.ru/ium/s23/ryabichev/f25-mipt-topkomb.html
Трансляции семинара не планируется, но, возможно, мы выложим запись.

#ВШМ_ФПМИ_топкомб
4😍2❤‍🔥1
Семинар «Алгебра, геометрия и теория чисел»

Когда: суббота 25 октября
Где: 322 АдмК

Учебный трек (16:00): Н.Колесников "Схемы Гильберта n точек и GIT"

Классическая теория GIT сконцентрирована вокруг одной идеи -- построить достаточно геометрическую модель пространства орбит X/G для действия алгебраической группы G на алгебраическом многообразии X.
В докаладе я постараюсь привести полную конструкцию схемы Гильберта как GIT-фактора и обсудить некоторые смежные вопросы. Цель доклада — выяснить насколько идеи теории GIT могут быть актуальны для вычисления мотивных инвариантов схемы Гильберта (мы более всего заинтересованы в π_1^А¹(Hilb_n А²), как аналоге группы Кос). Слушатели широко приглашаются к обсуждению!

Современный трек (18:00): С.Янжинов "Категория О и гипотеза Каждана-Лютсига (часть II)"

Будет продолжение моего рассказа 6го сентября. Я сформулирую соответствия Бейлинсона-Бернштейна и Римана-Гильберта, а также поговорю про B-эквивариантные D-модули и превратные пучки. Далее я определю алгебры Гекке групп Вейля и их полиномы Каждана-Люстига, необходимые для формулировки гипотез Каждана-Люстига, после чего мы займёмся вычислением пересечённых когомологий многообразий Шуберта: я расскажу про разрешения Ботта-Самельсона и конволюцию на ограниченной производной категории пучков на (немного модифицированных) многообразиях Шуберта, конструктивных относительно некоторой стратификации, которую я тоже построю; это в конечном счёте позволит нам посчитать ростки пучков пересечённых когомологий на многообразиях Шуберта (это подход Макферсона, чисто геометрический; Бейлинсон и Бернштейн в этом месте использовали характеристику p). В свою очередь, после применения теоремы о разложении из этого вычисления будут следовать наши гипотезы.
Для понимания необходимо поверить в разложение категории О на блоки через изоморфизм Хариша-Чандры.

Аннотации прошедших докладов, а также обновления по предстоящим, доступны в таблице https://docs.google.com/spreadsheets/d/1mk-KpzO7tOFuptWrFZbed6atLEqWxbRlgrWthil66kE/edit?usp=drivesdk

Присоединяйтесь к ТГ группе семинара.

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.

#ВШМ_АГТЧ
🔥4💅42
Семинар Добрушинской лаборатории

Когда:
вторник 28 октября, 16:15
Где: Адм.корпус, ауд.322.

Доклад:

Борис Казарновский (МФТИ),
"Об экспоненциальной алгебраической геометрии // On exponential algebraic geometry"

Конечная линейная комбинация функций вида e^{\lambda(z)}, где \lambda — линейный функционал в C^n, называется экспоненциальной суммой (для краткости э-сумма). Э-суммы образуют кольцо. Э-многообразие — это множество совместных нулей конечной системы э-сумм. Или нулевое множество конечно порожденного идеала в кольце э-сумм (это кольцо не Нетерово).

Остается ли что-нибудь алгебро-геометрическое при переходе от кольца полиномов к кольцу э-сумм? Этому вопросу больше 100 лет. Первая теорема доказана Дж.Риттом в 1929 г.: если все нули э-суммы f являются также нулями э-суммы g, то g делится на f в кольце э-сумм. Ритт рассматривал э-суммы от одного переменного. Многомерное утверждение доказано в 1975 г. Новые результаты начали появляться относительно недавно.

Я расскажу про алгебраическое определение размерности э-многообразия (примерно 2000 г.). Алгебраическая размерность, как правило равна геометрической, но иногда бывает меньше. Например, для уравнений e^z-1=e^{\pi z}-1=0 в C^1 с нулевым множеством z=0, алгебраическая размерность равна -1, т.е. алгебраическая размерность бывает отрицательной. В вопросе о несовпадении размерностей возникает некоторая содержательная и интересная математика.


Планируется интернет-трансляция по адресу:
https://telemost.yandex.ru/j/81255480783695
Регистрируйтесь вашей фамилией, а не псевдонимом!

Страницы семинара:
https://sites.google.com/view/dobr-seminar
https://www.mathnet.ru/conf167

Адрес: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Если у вас нет пропуска МФТИ, то на входе сообщайте, что идёте на наш семинар, и не забудьте паспорт.


#ВШМ_Добрушинский
👍1
Коллоквиум!

В субботу наши первокурсники сдавали (а мы принимали) первый в истории ВШМ коллоквиум — по алгебре. Вот как это выглядело. Результаты: никто не получил ни 10, ни неудов. Лектор обешает, что экзамен будет труднее. Движемся дальше!
👍2415❤‍🔥4😢1🐳1