Data Analytics – Telegram
Data Analytics
108K subscribers
126 photos
2 files
791 links
Perfect channel to learn Data Analytics

Learn SQL, Python, Alteryx, Tableau, Power BI and many more

For Promotions: @coderfun @love_data
Download Telegram
Which of the following SQL join is used to combine each row of one table with each row of another table, and return the Cartesian product of the sets of rows from the tables that are joined?
Anonymous Quiz
12%
SELF JOIN
57%
CROSS JOIN
8%
LEFT JOIN
23%
FULL OUTER JOIN
9👍7
Essential Skills Excel for Data Analysts 🚀

1️⃣ Data Cleaning & Transformation

Remove Duplicates – Ensure unique records.
Find & Replace – Quick data modifications.
Text Functions – TRIM, LEN, LEFT, RIGHT, MID, PROPER.
Data Validation – Restrict input values.

2️⃣ Data Analysis & Manipulation

Sorting & Filtering – Organize and extract key insights.
Conditional Formatting – Highlight trends, outliers.
Pivot Tables – Summarize large datasets efficiently.
Power Query – Automate data transformation.

3️⃣ Essential Formulas & Functions

Lookup Functions – VLOOKUP, HLOOKUP, XLOOKUP, INDEX-MATCH.
Logical Functions – IF, AND, OR, IFERROR, IFS.
Aggregation Functions – SUM, AVERAGE, MIN, MAX, COUNT, COUNTA.
Text Functions – CONCATENATE, TEXTJOIN, SUBSTITUTE.

4️⃣ Data Visualization
Charts & Graphs – Bar, Line, Pie, Scatter, Histogram.

Sparklines – Miniature charts inside cells.
Conditional Formatting – Color scales, data bars.
Dashboard Creation – Interactive and dynamic reports.

5️⃣ Advanced Excel Techniques
Array Formulas – Dynamic calculations with multiple values.
Power Pivot & DAX – Advanced data modeling.
What-If Analysis – Goal Seek, Scenario Manager.
Macros & VBA – Automate repetitive tasks.

6️⃣ Data Import & Export
CSV & TXT Files – Import and clean raw data.
Power Query – Connect to databases, web sources.
Exporting Reports – PDF, CSV, Excel formats.

Here you can find some free Excel books & useful resources: https://news.1rj.ru/str/excel_data

Hope it helps :)

#dataanalyst
👍157
Monetizing Your Data Analytics Skills: Side Hustles & Passive Income Streams

Once you've mastered data analytics, you can leverage your expertise to generate income beyond your 9-to-5 job. Here’s how:

1️⃣ Freelancing & Consulting 💼

Offer data analytics, visualization, or SQL expertise on platforms like Upwork, Fiverr, and Toptal.

Provide business intelligence solutions, dashboard building, or data cleaning services.

Work with startups, small businesses, and enterprises remotely.


2️⃣ Creating & Selling Online Courses 🎥

Teach SQL, Power BI, Python, or Data Visualization on platforms like Udemy, Coursera, and Teachable.

Offer exclusive workshops or bootcamps via LinkedIn, Gumroad, or your website.

Monetize your expertise once and earn passive income forever.


3️⃣ Blogging & Technical Writing ✍️

Write data-related articles on Medium, Towards Data Science, or Substack.

Start a newsletter focused on analytics trends and career growth.

Earn through Medium Partner Program, sponsored posts, or affiliate marketing.


4️⃣ YouTube & Social Media Monetization 📹

Create a YouTube channel sharing tutorials on SQL, Power BI, Python, and real-world analytics projects.

Monetize through ads, sponsorships, and memberships.

Grow a LinkedIn, Twitter, or Instagram audience and collaborate with brands.


5️⃣ Affiliate Marketing in Data Analytics 🔗

Promote courses, books, tools (Tableau, Power BI, Python IDEs) and earn commissions.

Join Udemy, Coursera, or DataCamp affiliate programs.

Recommend data tools, laptops, or online learning resources through blogs or YouTube.


6️⃣ Selling Templates & Dashboards 📊

Create Power BI or Tableau templates and sell them on Gumroad or Etsy.

Offer SQL query libraries, Excel automation noscripts, or data storytelling templates.

Provide customized analytics solutions for different industries.


7️⃣ Writing E-books or Guides 📖

Publish an e-book on SQL, Power BI, or breaking into data analytics.

Sell through Amazon Kindle, Gumroad, or your website.

Provide case studies, real-world datasets, and practice problems.


8️⃣ Building a Subnoscription-Based Community 🌍

Create a private Slack, Discord, or Telegram group for data professionals.

Charge for premium access, mentorship, and exclusive content.

Offer live Q&A sessions, job referrals, and networking opportunities.


9️⃣ Developing & Selling AI-Powered Tools 🤖

Build Python noscripts, automation tools, or AI-powered analytics apps.

Sell on GitHub, Gumroad, or AppSumo.

Offer API-based solutions for businesses needing automated insights.


🔟 Landing Paid Speaking Engagements & Workshops 🎤

Speak at data conferences, webinars, and corporate training events.

Offer paid workshops for businesses or universities.

Become a recognized expert in your niche and command high fees.

Start Small, Scale Fast! 🚀

The data analytics field offers endless opportunities to earn beyond a job. Start with freelancing, content creation, or digital products—then scale it into a business!

Hope it helps :)

#dataanalytics
12👍8🔥1
Which of the following SQL Join is used to join a table to itself?
Anonymous Quiz
6%
LEFT JOIN
4%
RIGHT JOIN
10%
CROSS JOIN
80%
SELF JOIN
👍52
Essential Excel Functions for Data Analysts 🚀

1️⃣ Basic Functions

SUM() – Adds a range of numbers. =SUM(A1:A10)

AVERAGE() – Calculates the average. =AVERAGE(A1:A10)

MIN() / MAX() – Finds the smallest/largest value. =MIN(A1:A10)


2️⃣ Logical Functions

IF() – Conditional logic. =IF(A1>50, "Pass", "Fail")

IFS() – Multiple conditions. =IFS(A1>90, "A", A1>80, "B", TRUE, "C")

AND() / OR() – Checks multiple conditions. =AND(A1>50, B1<100)


3️⃣ Text Functions

LEFT() / RIGHT() / MID() – Extract text from a string.

=LEFT(A1, 3) (First 3 characters)

=MID(A1, 3, 2) (2 characters from the 3rd position)


LEN() – Counts characters. =LEN(A1)

TRIM() – Removes extra spaces. =TRIM(A1)

UPPER() / LOWER() / PROPER() – Changes text case.


4️⃣ Lookup Functions

VLOOKUP() – Searches for a value in a column.

=VLOOKUP(1001, A2:B10, 2, FALSE)


HLOOKUP() – Searches in a row.

XLOOKUP() – Advanced lookup replacing VLOOKUP.

=XLOOKUP(1001, A2:A10, B2:B10, "Not Found")



5️⃣ Date & Time Functions

TODAY() – Returns the current date.

NOW() – Returns the current date and time.

YEAR(), MONTH(), DAY() – Extracts parts of a date.

DATEDIF() – Calculates the difference between two dates.


6️⃣ Data Cleaning Functions

REMOVE DUPLICATES – Found in the "Data" tab.

CLEAN() – Removes non-printable characters.

SUBSTITUTE() – Replaces text within a string.

=SUBSTITUTE(A1, "old", "new")



7️⃣ Advanced Functions

INDEX() & MATCH() – More flexible alternative to VLOOKUP.

TEXTJOIN() – Joins text with a delimiter.

UNIQUE() – Returns unique values from a range.

FILTER() – Filters data dynamically.

=FILTER(A2:B10, B2:B10>50)



8️⃣ Pivot Tables & Power Query

PIVOT TABLES – Summarizes data dynamically.

GETPIVOTDATA() – Extracts data from a Pivot Table.

POWER QUERY – Automates data cleaning & transformation.


You can find Free Excel Resources here: https://news.1rj.ru/str/excel_data

Hope it helps :)

#dataanalytics
👍2014
Importance of AI in Data Analytics

AI is transforming the way data is analyzed and insights are generated. Here's how AI adds value in data analytics:

1. Automated Data Cleaning

AI helps in detecting anomalies, missing values, and outliers automatically, improving data quality and saving analysts hours of manual work.

2. Faster & Smarter Decision Making

AI models can process massive datasets in seconds and suggest actionable insights, enabling real-time decision-making.

3. Predictive Analytics

AI enables forecasting future trends and behaviors using machine learning models (e.g., sales predictions, churn forecasting).

4. Natural Language Processing (NLP)

AI can analyze unstructured data like reviews, feedback, or comments using sentiment analysis, keyword extraction, and topic modeling.

5. Pattern Recognition

AI uncovers hidden patterns, correlations, and clusters in data that traditional analysis may miss.

6. Personalization & Recommendation

AI algorithms power recommendation systems (like on Netflix, Amazon) that personalize user experiences based on behavioral data.

7. Data Visualization Enhancement

AI auto-generates dashboards, chooses best chart types, and highlights key anomalies or insights without manual intervention.

8. Fraud Detection & Risk Analysis

AI models detect fraud and mitigate risks in real-time using anomaly detection and classification techniques.

9. Chatbots & Virtual Analysts

AI-powered tools like ChatGPT allow users to interact with data using natural language, removing the need for technical skills.

10. Operational Efficiency

AI automates repetitive tasks like report generation, data transformation, and alerts—freeing analysts to focus on strategy.

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)

#dataanalytics
👍127
Which SQL clause is used to filter records after aggregation?
Anonymous Quiz
46%
HAVING
26%
GROUP BY
18%
WHERE
10%
ORDER BY
👍11
Data Analytics
Which SQL clause is used to filter records after aggregation?
HAVING is used to filter aggregated results after GROUP BY.

Unlike WHERE, it works with aggregate functions like SUM(), COUNT(), etc.


Example:

SELECT department, COUNT(*) AS employee_count  
FROM employees
GROUP BY department
HAVING COUNT(*) > 10;


This filters departments after counting employees, keeping only those with more than 10 employees.

#dataanalytics
👍96
Quick SQL functions cheat sheet for beginners

Aggregate Functions

COUNT(*): Counts rows.

SUM(column): Total sum.

AVG(column): Average value.

MAX(column): Maximum value.

MIN(column): Minimum value.


String Functions

CONCAT(a, b, …): Concatenates strings.

SUBSTRING(s, start, length): Extracts part of a string.

UPPER(s) / LOWER(s): Converts string case.

TRIM(s): Removes leading/trailing spaces.


Date & Time Functions

CURRENT_DATE / CURRENT_TIME / CURRENT_TIMESTAMP: Current date/time.

EXTRACT(unit FROM date): Retrieves a date part (e.g., year, month).

DATE_ADD(date, INTERVAL n unit): Adds an interval to a date.


Numeric Functions

ROUND(num, decimals): Rounds to a specified decimal.

CEIL(num) / FLOOR(num): Rounds up/down.

ABS(num): Absolute value.

MOD(a, b): Returns the remainder.


Control Flow Functions

CASE: Conditional logic.

COALESCE(val1, val2, …): Returns the first non-null value.


Like for more free Cheatsheets ❤️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)

#dataanalytics
👍98
Which of the following is not an aggregate function?
Anonymous Quiz
12%
SUM()
21%
MIN()
61%
MEAN()
6%
AVG()
👍82
Excel Cheat Sheet 📔

This Excel cheatsheet is designed to be your quick reference guide for using Microsoft Excel efficiently.

1. Basic Functions
   - SUM: =SUM(range)
   - AVERAGE: =AVERAGE(range)
   - COUNT: =COUNT(range)
   - MAX: =MAX(range)
   - MIN: =MIN(range)

2. Text Functions
   - CONCATENATE: =CONCATENATE(text1, text2, ...) or =TEXTJOIN(delimiter, ignore_empty, text1, text2, ...)
   - LEFT: =LEFT(text, num_chars)
   - RIGHT: =RIGHT(text, num_chars)
   - MID: =MID(text, start_num, num_chars)
   - TRIM: =TRIM(text)

3. Logical Functions
   - IF: =IF(condition, true_value, false_value)
   - AND: =AND(condition1, condition2, ...)
   - OR: =OR(condition1, condition2, ...)
   - NOT: =NOT(condition)

4. Lookup Functions
   - VLOOKUP: =VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])
   - HLOOKUP: =HLOOKUP(lookup_value, table_array, row_index_num, [range_lookup])
   - INDEX: =INDEX(array, row_num, [column_num])
   - MATCH: =MATCH(lookup_value, lookup_array, [match_type])

5. Data Sorting & Filtering
   - Sort: *Data > Sort*
   - Filter: *Data > Filter*
   - Advanced Filter: *Data > Advanced*

6. Conditional Formatting
   - Apply Formatting: *Home > Conditional Formatting > New Rule*
   - Highlight Cells: *Home > Conditional Formatting > Highlight Cells Rules*

7. Charts and Graphs
   - Insert Chart: *Insert > Select Chart Type*
   - Customize Chart: *Chart Tools > Design/Format*

8. PivotTables
   - Create PivotTable: *Insert > PivotTable*
   - Refresh PivotTable: *Right-click on PivotTable > Refresh*

9. Data Validation
   - Set Validation: *Data > Data Validation*
   - List: *Allow: List > Source: range or items*

10. Protecting Data
    - Protect Sheet: *Review > Protect Sheet*
    - Protect Workbook: *Review > Protect Workbook*

11. Shortcuts
    - Copy: Ctrl + C
    - Paste: Ctrl + V
    - Undo: Ctrl + Z
    - Redo: Ctrl + Y
    - Save: Ctrl + S

12. Printing Options
    - Print Area: *Page Layout > Print Area > Set Print Area*
    - Page Setup: *Page Layout > Page Setup*

Checklist for Data Analyst: https://dataanalytics.beehiiv.com/p/data

I have curated best 80+ top-notch Data Analytics Resources 👇👇
https://news.1rj.ru/str/DataSimplifier

Like for more Interview Resources ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
10👍10
Python for Data Analysis: Must-Know Libraries 👇👇

Python is one of the most powerful tools for Data Analysts, and these libraries will supercharge your data analysis workflow by helping you clean, manipulate, and visualize data efficiently.

🔥 Essential Python Libraries for Data Analysis:

Pandas – The go-to library for data manipulation. It helps in filtering, grouping, merging datasets, handling missing values, and transforming data into a structured format.

📌 Example: Loading a CSV file and displaying the first 5 rows:

import pandas as pd df = pd.read_csv('data.csv') print(df.head()) 


NumPy – Used for handling numerical data and performing complex calculations. It provides support for multi-dimensional arrays and efficient mathematical operations.

📌 Example: Creating an array and performing basic operations:

import numpy as np arr = np.array([10, 20, 30]) print(arr.mean()) # Calculates the average 


Matplotlib & Seaborn – These are used for creating visualizations like line graphs, bar charts, and scatter plots to understand trends and patterns in data.

📌 Example: Creating a basic bar chart:

import matplotlib.pyplot as plt plt.bar(['A', 'B', 'C'], [5, 7, 3]) plt.show() 


Scikit-Learn – A must-learn library if you want to apply machine learning techniques like regression, classification, and clustering on your dataset.

OpenPyXL – Helps in automating Excel reports using Python by reading, writing, and modifying Excel files.

💡 Challenge for You!
Try writing a Python noscript that:
1️⃣ Reads a CSV file
2️⃣ Cleans missing data
3️⃣ Creates a simple visualization

React with ♥️ if you want me to post the noscript for above challenge! ⬇️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
8👍4👏1
How do analysts use SQL in a company?

SQL is every data analyst’s superpower! Here's how they use it in the real world:

Extract Data

Pull data from multiple tables to answer business questions.

Example:

SELECT name, revenue FROM sales WHERE region = 'North America';


(P.S. Avoid SELECT *—your future self (and the database) will thank you!)


Clean & Transform

Use SQL functions to clean raw data.

Think TRIM(), COALESCE(), CAST()—like giving data a fresh haircut.


Summarize & Analyze

Group and aggregate to spot trends and patterns.

GROUP BY, SUM(), AVG() – your best friends for quick insights.


Build Dashboards

Feed SQL queries into Power BI, Tableau, or Excel to create visual stories that make data talk.

Run A/B Tests

Evaluate product changes and campaigns by comparing user groups.

SQL makes sure your decisions are backed by data, not just gut feeling.


Use Views & CTEs

Simplify complex queries with Views and Common Table Expressions.

Clean, reusable, and boss-approved.


Drive Decisions

SQL powers decisions across Marketing, Product, Sales, and Finance.

When someone asks “What’s working?”—you’ve got the answers.


And remember: write smart queries, not lazy ones. Say no to SELECT * unless you really mean it!

Hit ♥️ if you want me to share more real-world examples to make data analytics easier to understand!

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
21👍4
Which of the following is not a recommend practice while writing SQL code?
Anonymous Quiz
25%
Use UPPERCASE for SQL keywords
5%
Use JOIN only when needed
25%
Format long queries for readability
45%
Always use SELECT *
👍162
10 SQL Concepts Every Data Analyst Should Master 👇

SELECT, WHERE, ORDER BY – Core of querying your data
JOINs (INNER, LEFT, RIGHT, FULL) – Combine data from multiple tables
GROUP BY & HAVING – Aggregate and filter grouped data
Subqueries – Nest queries inside queries for complex logic
CTEs (Common Table Expressions) – Write cleaner, reusable SQL logic
Window Functions – Perform advanced analytics like rankings & running totals
Indexes – Boost your query performance
Normalization – Structure your database efficiently
UNION vs UNION ALL – Combine result sets with or without duplicates
Stored Procedures & Functions – Reusable logic inside your DB

React with ❤️ if you want me to cover each topic in detail

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
11👍10
Must-Know Power BI Charts & When to Use Them

1. Bar/Column Chart

Use for: Comparing values across categories
Example: Sales by region, revenue by product

2. Line Chart

Use for: Trends over time
Example: Monthly website visits, stock price over years

3. Pie/Donut Chart

Use for: Showing proportions of a whole
Example: Market share by brand, budget distribution

4. Table/Matrix

Use for: Detailed data display with multiple dimensions
Example: Sales by product and month, performance by employee and region

5. Card/KPI

Use for: Displaying single important metrics
Example: Total Revenue, Current Month’s Profit

6. Area Chart

Use for: Showing cumulative trends
Example: Cumulative sales over time

7. Stacked Bar/Column Chart

Use for: Comparing total and subcategories
Example: Sales by region and product category

8. Clustered Bar/Column Chart

Use for: Comparing multiple series side-by-side
Example: Revenue and Profit by product

9. Waterfall Chart

Use for: Visualizing increment/decrement over a value
Example: Profit breakdown – revenue, costs, taxes

10. Scatter Chart

Use for: Relationship between two numerical values
Example: Marketing spend vs revenue, age vs income

11. Funnel Chart

Use for: Showing steps in a process
Example: Sales pipeline, user conversion funnel

12. Treemap

Use for: Hierarchical data in a nested format
Example: Sales by category and sub-category

13. Gauge Chart

Use for: Progress toward a goal
Example: % of sales target achieved

Hope it helps :)

#powerbi
👍164
Python CheatSheet 📚

1. Basic Syntax
- Print Statement: print("Hello, World!")
- Comments: # This is a comment

2. Data Types
- Integer: x = 10
- Float: y = 10.5
- String: name = "Alice"
- List: fruits = ["apple", "banana", "cherry"]
- Tuple: coordinates = (10, 20)
- Dictionary: person = {"name": "Alice", "age": 25}

3. Control Structures
- If Statement:

     if x > 10:
print("x is greater than 10")

- For Loop:

     for fruit in fruits:
print(fruit)

- While Loop:

     while x < 5:
x += 1

4. Functions
- Define Function:

     def greet(name):
return f"Hello, {name}!"

- Lambda Function: add = lambda a, b: a + b

5. Exception Handling
- Try-Except Block:

     try:
result = 10 / 0
except ZeroDivisionError:
print("Cannot divide by zero.")

6. File I/O
- Read File:

     with open('file.txt', 'r') as file:
content = file.read()

- Write File:

     with open('file.txt', 'w') as file:
file.write("Hello, World!")

7. List Comprehensions
- Basic Example: squared = [x**2 for x in range(10)]
- Conditional Comprehension: even_squares = [x**2 for x in range(10) if x % 2 == 0]

8. Modules and Packages
- Import Module: import math
- Import Specific Function: from math import sqrt

9. Common Libraries
- NumPy: import numpy as np
- Pandas: import pandas as pd
- Matplotlib: import matplotlib.pyplot as plt

10. Object-Oriented Programming
- Define Class:

      class Dog:
def __init__(self, name):
self.name = name
def bark(self):
return "Woof!"


11. Virtual Environments
- Create Environment: python -m venv myenv
- Activate Environment:
- Windows: myenv\Scripts\activate
- macOS/Linux: source myenv/bin/activate

12. Common Commands
- Run Script: python noscript.py
- Install Package: pip install package_name
- List Installed Packages: pip list

This Python checklist serves as a quick reference for essential syntax, functions, and best practices to enhance your coding efficiency!

Checklist for Data Analyst: https://dataanalytics.beehiiv.com/p/data

Here you can find essential Python Interview Resources👇
https://news.1rj.ru/str/DataSimplifier

Like for more resources like this 👍 ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
👍1511👏1
9 tips to learn Python for Data Analysis:

🐍 Start with the basics: variables, loops, functions

🧹 Master Pandas for data manipulation

🔢 Use NumPy for numerical operations

📊 Visualize data with Matplotlib and Seaborn

📂 Work with real datasets (CSV, Excel, APIs)

🧼 Clean and preprocess messy data

📈 Understand basic statistics and correlations

⚙️ Automate repetitive analysis tasks with noscripts

💡 Build mini-projects to apply your skills

Free Python Resources: https://news.1rj.ru/str/pythonanalyst

Like for more daily tips 👍 ♥️

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
9👍5
7 Must-Have Tools for Data Analysts in 2025:

SQL – Still the #1 skill for querying and managing structured data
Excel / Google Sheets – Quick analysis, pivot tables, and essential calculations
Python (Pandas, NumPy) – For deep data manipulation and automation
Power BI – Transform data into interactive dashboards
Tableau – Visualize data patterns and trends with ease
Jupyter Notebook – Document, code, and visualize all in one place
Looker Studio – A free and sleek way to create shareable reports with live data.

Perfect blend of code, visuals, and storytelling.

React with ❤️ for free tutorials on each tool

Share with credits: https://news.1rj.ru/str/sqlspecialist

Hope it helps :)
22👍10
Which of the following is not an aggregate function in SQL?
Anonymous Quiz
10%
COUNT()
4%
SUM()
7%
AVG()
79%
ROUND()
👍122👎1🔥1