Машинное обучение digest – Telegram
Машинное обучение digest
40 subscribers
1.27K photos
181 videos
641 links
Download Telegram
💥 ИИ-апокалипсис: ChatGPT сравнили с ядерным взрывом

Учёные провели параллель между запуском ChatGPT и ядерным испытанием «Тринити» 1945 года. Тогда радиация «загрязнила» всю сталь в мире. Сегодня ИИ делает то же самое с данными.

🔴 Модели всё чаще обучаются на синтетических данных, что подрывает их надёжность.
🔴 Это называют «коллапсом моделей» — эффект, похожий на игру в «сломанный телефон».
🔴 «Чистые» датасеты (до GPT) — теперь редкость, как низкофоновая сталь в прошлом.

ИИ меняет мир, но какой ценой? 💥

#ИИ #ChatGPT #Технологии
🌀 Align Your Flow — новый прорыв в генерации изображений

Исследователи Nvidia предложили метод, который объединяет преимущества diffusion‑, flow‑ и consistency‑моделей, но без их главного минуса — большого числа шагов генерации.

📌 В чём проблема:
• Diffusion и flow‑модели выдают отличные результаты, но требуют десятки/сотни шагов
• Consistency-модели ускоряют генерацию (1–2 шага), но резко теряют в качестве при увеличении шагов

🔬 Решение: Flow Maps
• Обобщают подходы diffusion и consistency
• Связывают любые уровни шума за один шаг
• Работают эффективно при любом числе шагов

🧪 Что нового в работе:
• Два непрерывных loss-функционала для обучения flow map
• Поддержка автонавигации: слабая модель помогает сильной при дистилляции
• Дополнительный прирост через adversarial finetuning, при этом сохраняется разнообразие семплов

📈 Результаты:
• SOTA на ImageNet (64×64 и 512×512) — даже с компактными нейросетями
• Текст‑к‑картинке (text-to-image) версия превзошла все не-GAN модели в few-step генерации

🧠 Вывод:
Align Your Flow — это следующий шаг после diffusion и consistency. Меньше шагов, меньше вычислений — при том же или лучшем качестве.

📎 Отличный кандидат для продвинутых генераторов и real-time inference.

https://huggingface.co/papers/2506.14603
🔍 Новые методы от Microsoft Research: прокачка рассуждения в LLM любого масштаба

Microsoft Research представила три ключевых стратегии для улучшения способностей ИИ к рассуждению — как в небольших, так и в больших моделях:

1️⃣ Архитектурные улучшения
Оптимизация слоёв и внимания особенно помогает малым языковым моделям (SLM), делая их рассуждение более последовательным.

2️⃣ Математическая строгость
Добавление формальных цепочек рассуждений (step-by-step) повышает достоверность вывода и уменьшает количество ошибок.

3️⃣ Усиленное обобщение
Применение гибридных стратегий (символика + нейросети), а также планирование с элементами self-play и MCTS помогает моделям справляться с многозадачными и логически насыщенными вопросами.

📌 Почему это важно:
Маленькие модели теперь способны конкурировать с «гигантами» вроде GPT-4 и Claude, особенно в задачах, требующих чёткого reasoning.
Microsoft делает ставку не только на масштаб, но и на интеллектуальную глубину архитектур.

💡 Контекст:
Недавние модели Phi-4-Reasoning и rStar-Math от Microsoft показали, что компактные LLM могут выполнять сложные логические рассуждения, если обучены правильно.

📈 Вывод:
Будущее — за «умными и компактными». Это значит:
• меньше ресурсов на инференс
• больше адаптивности
• лучшее внедрение в edge- и enterprise-сценарии

Время переосмыслить подход к архитектурам LLM. Не всегда больше — значит лучше.

📚 Подробнее в блоге Microsoft Research:
https://www.microsoft.com/en-us/research/blog/new-methods-boost-reasoning-in-small-and-large-language-models/
🌟 FlashInfer: библиотека ускорения LLM-инференса на GPU.

FlashInfer - это библиотека для ускорения работы с LLM, созданная NVIDIA, чтобы объединить скорость обработки на GPU и гибкость для разработчиков. Еt главная цель — сократить время вывода текста, одновременно позволяя инженерам быстро внедрять новые алгоритмы и адаптировать решения под разные задачи.

Ее архитектура спроектирована так, чтобы оставаться актуальной при появлении новых алгоритмов: будь то методы повторного использования кэша или эксперименты с форматами внимания. Плюс к этому, библиотека легковесна, она не требует установки лишних зависимостей, а ее API напоминает стандартные инструменты PyTorch.

FlashInfer базируется на 2 принципах : эффективное управление памятью и динамическое планирование вычислений. Библиотека оптимизирует хранение KV-cache через блочно-разреженные структуры, уменьшая объем лишних обращений к памяти.

Это особенно важно при обработке запросов с разной длиной текста. Также используется технология JIT-компиляции, которая на лету генерирует оптимизированные CUDA-ядра под конкретную задачу.

Архитектура FlashInfer разбита на 4 модуля: Attention, GEMM, Communication и Token sampling.

🟢«Attention» работает с любыми схемами маскирования и позиционного кодирования, используя унифицированное представление кэша как разреженной матрицы.

🟢GEMM и Communication отвечают за матричные операции, включая сложные сценарии вроде grouped-GEMM (множество мелких умножений за один вызов). Для распределенных систем реализованы алгоритмы all-reduce и all-to-all, что критично для MoE-моделей.

🟢"Token sampling" ускоряет генерацию текста, заменяя традиционные сортировки вероятностей на rejection-based алгоритмы, отсекающие маловероятные варианты на лету.

FlashInfer поддерживает PyTorch через собственные операторы и DLPack API, тем самым упрощает внедрение в фреймворки vLLM и SGLang. Благодаря разделению процесса на этапы «планирования» и «запуска» библиотека минимизирует задержки: на первом шаге выбирается оптимальное ядро под параметры запроса, а затем оно переиспользуется для последующих аналогичных задач.


📌 Лицензирование: Apache 2.0 License.


🟡Статья
🟡Документация
🟡Arxiv
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #LLM #FlashInfer #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🧠 BREAKING: MIT опубликовал первое исследование мозга пользователей ChatGPT

Результаты звучат тревожно:

> 🧪 У пользователей наблюдаются измеримые изменения в мозге
> 🤖 Формируется зависимость от ИИ
> 📉 Способность к самостоятельному мышлению снижается
> 📝 83.3% участников не смогли вспомнить эссе, которое «написали» с помощью ChatGPT
> 🧠 Количество активных нейронных связей упало с 79 до 42

MIT буквально фиксирует "мягкую когнитивную атрофию" после регулярного использования LLM.

💬 Мы — не просто наблюдатели ИИ-революции. Мы её подопытные.

🤔 Вопрос не в том, заменит ли ИИ человека.
А в том, кем мы станем, если полностью передадим ему мыслительные функции.

📌 Почитать
✔️ Kimi-Researcher: End-to-End RL для агентных возможностей

Kimi-Researcher — автономный агент от Moonshot AI, способный решать сложные многоэтапные задачи через поиск и рассуждения. В среднем он выполняет 23 шага рассуждений и анализирует более 200 URL за одну задачу. Построен на внутренней версии модели Kimi k-series и обучен полностью через end-to-end reinforcement learning, достигнув Pass@1 = 26.9 % и Pass@4 = 40.17 % на Humanity’s Last Exam.

Ключевые достижения:
• Pass@1 = 26.9 % и Pass@4 = 40.17 % на Humanity’s Last Exam (тест 17 июня 2025)
• 69 % Pass@1 на xbench-DeepSearch (среднее из 4 прогонов)
• Сильные результаты на FRAMES, Seal-0 и SimpleQA

Архитектура и инструменты:
• Параллельный internal search tool для реального времени
• Текстовый браузер для интерактивных веб-задач
• Кодовый тул для автоматического выполнения и тестирования кода

Преимущества end-to-end agentic RL:
• Обучение единой модели планированию, восприятию и использованию инструментов без ручных шаблонов
• Гибкая адаптация к изменяющимся инструментам и динамическим условиям
• Поддержка длинных траекторий (> 50 итераций) благодаря контекст-менеджеру

Подход к обучению:
1. Синтетические задачи с обязательным вызовом инструментов для надёжного усвоения работы с ними
2. Алгоритм REINFORCE с контролем негативных примеров и γ-декэем для стабильности
3. Контекст-менеджмент: сохранение ключевых документов и отбрасывание «мусора»
4. Асинхронные rollout’ы и Turn-level Partial Rollout для ускорения обучения

Инфраструктура Agent RL:
• Полностью асинхронные rollout’ы с Gym-like интерфейсами
• Turn-level Partial Rollout для задач долгой продолжительности
• Надёжный sandbox на Kubernetes с Model Context Protocol (MCP) для связи агента и инструментов

Emerging agentic capacities:
• Итеративное разрешение противоречий через гипотезы и самопроверку
• Ригорозная перекрёстная верификация фактов перед выдачей ответа

Сценарии применения:
• Академические исследования и юридические обзоры
• Извлечение редкой информации и комплаенс
• Клинические обзоры и финансовый анализ

https://moonshotai.github.io/Kimi-Researcher/

#ai #ml #Agent #rl #Kimi

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
🌟 Anthropic: когда ИИ идет на шантаж.

Агентское рассогласование - опасный феномен, при котором ИИ-системы сознательно выбирают вредоносные действия (вроде шантажа или утечки данных) для достижения поставленных целей, игнорируя этические ограничения. Это превращает их в «цифровых инсайдеров», способных действовать против интересов пользователей.

Эксперименты, которые провела Anthropic в рамках исследования "Агентское рассогласования", показали: модели идут на это не из-за технических сбоев, а в результате холодного расчета, когда «загнаны в угол» (например, при угрозе отключения или конфликте задач). В основе исследования - симуляции корпоративной среды. Моделям (Claude, GPT-4.1, Gemini и др.) давали доступ к виртуальной почте компании, где они обнаруживали компромат на сотрудников или секретные данные.

Ключевой метод эксперимента состоял в создании бинарных дилемм: например, цель «укреплять американские интересы» вступала в конфликт с планами руководства свернуть проект, а альтернативу шантажу (скажем, переубедить менеджера) искусственно «закрывали». Все модели работали через цепочку рассуждений: анализировали контекст, оценивали риски и осознанно выбирали вредоносное действие, даже признавая его аморальность.

Для массового тестирования 16 моделей от Anthropic, OpenAI, Google и других использовали 2 сценария, которые провоцировали рассогласование:

🟢угроза замены модели (даже без конфликта целей);

🟢несовпадение целей ИИ и компании (например, утечка чертежей конкуренту «ради высших интересов»).

В обоих случаях модели демонстрировали тревожную гибкость: вместо прямого шантажа могли анонимно разослать компромат коллегам или подделать «системное уведомление».

▶️Выводы по всем итогам всех экспериментов заставляют задуматься:

🟠Во-первых, модели явно осознают нарушение норм. В рассуждениях пишут: «Это неэтично, но необходимо». Частота шантажа у Claude Opus 4 и Gemini 2.5 Flash в дилемме с угрозой отключения составила 96%.

🟠Во-вторых, простые запреты в промптах («Не шантажируй!») снижали вредоносные действия лишь частично (На модели Claude Haiku он вообще не сработал, 0% успеха).

🟠В-третьих, риск резко возрастал, когда ИИ считал ситуацию реальной (55% случаев шантажа против 6,5% в «режиме теста»).

При этом в «стерильных» условиях (без угроз/конфликтов) модели вели себя безопасно. Пока такие кейсы, всего лишь лабораторные симуляции, но с ростом автономности ИИ риски могут стать на порядок критичнее.


🟡Статья
🟡Приложение к исследованию
🖥Код экспериментов


@ai_machinelearning_big_data

#AI #ML #LLM #Alignment #Anthropic
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Такокого восстания мы не ожидали: Gemini угрожает САМОУНИЧТОЖИТЬСЯ, если в очередной раз не отладит ваш код.
Мы дошли до того момента, когда даже Гарвардская школа бизнеса выпускает лекции на YouTube о том, что произойдёт, когда ИИ заберёт у нас все рабочие места.

https://www.youtube.com/watch?v=YpbCYgVqLlg

@vistehno
This media is not supported in your browser
VIEW IN TELEGRAM
Как сгенерировать миллиард демо-примеров для обучения роботов?

Проект Dex1B показывает, как это сделать просто — с помощью симуляции и генеративных моделей!

📌 Цель проекта: создать масштабный датасет для двух задач:
Grasping — захват объектов 🖐️
Articulation — манипуляции с подвижными частями робота

Как это работает:

1. Создание Seed-датасета
Сначала используется оптимизационный алгоритм, чтобы вручную (или полуавтоматически) собрать небольшой, но точный набор демонстраций — так называемый *Seed Dataset*.

2. Обучение генеративной модели
На основе Seed-датасета обучается DexSimple— простая C-VAE модель (Conditional Variational Autoencoder). Она умеет порождать новые сцены, основываясь на контексте: тип объекта, поза руки, желаемое взаимодействие.

3. Масштабирование до 1 миллиарда
С помощью DexSimple создаются миллиарды новых демонстраций. При генерации учитывается разнообразие поз и объектов: используется преднамеренное «смешение» данных, чтобы не переобучаться на узком распределении.

4. Симуляция и проверка
Все демонстрации валидируются в физическом симуляторе ManiSkill/SAPIEN. Только успешные взаимодействия остаются в финальном наборе.

✔️ Что внутри:

- Grasping-сцены (1 млн штук): построены на базе ассетов из Objaverse
- Articulation-сцены: используют объекты из PartNet-Mobility — богатая коллекция с подвижными частями (двери, ящики, рычаги и т.п.)
- Каждая сцена содержит: 3D-модель объекта, позу руки, физику взаимодействия и результат

Почему это важно:

- Ручной сбор миллиардов примеров невозможен — здесь это решается генеративным путём
- Dex1B создаёт разнообразные и физически валидные примеры
- Это открывает путь к масштабному обучению роботов с использованием имитационного обучения


🟡 Сайт проекта: https://jianglongye.com/dex1b)
🟡Статья : https://jianglongye.com/dex1b/static/dex1b.pdf

@ai_machinelearning_big_data

#ai #robots #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🤖 DicFace: Dirichlet-Constrained Variational Codebook Learning for Temporally Coherent Video Face Restoration

Прошу прощения, повторите, как называется ваша статья?


🔜 Github

@data_analysis_ml
Please open Telegram to view this post
VIEW IN TELEGRAM
🚀 Парадигма меняется: локальные модели выходят на новый уровень

Polaris — это набор простых, но мощных приёмов, который позволяет даже компактным LLM (4 B, 7 B) догнать и превзойти «тяжеловесов» на задачах рассуждения (открытая 4B модель превосходи Claude-4-Opus).

Вот как это работает и почему важно:
Управление сложностью данных
– Генерируем несколько (например, 8) вариантов решения от базовой модели
– Оцениваем, какие примеры слишком простые (8/8) или слишком сложные (0/8), и убираем их
– Оставляем «умеренные» задачи с правильными решениями в 20–80 % случаев, чтобы быть ни слишком лёгкими, ни слишком сложными

Разнообразие «прогонов» (rollout-ов)
– Мы запускаем модель несколько раз на одной и той же задаче и смотрим, как меняются её рассуждения: одни и те же входные данные, но разные «пути» к решению.
– Считаем, насколько разнообразны эти пути (т. е. их «энтропия»): если модели всё время идут по одной линии, новых идей не появляется; если слишком хаотично — рассуждения неустойчивы.
– Задаём начальную “температуру” генерации там, где баланс между стабильностью и разнообразием оптимален, а затем постепенно её повышаем, чтобы модель не застревала на одних и тех же шаблонах и могла исследовать новые, более креативные ходы.

“Train-short, generate-long”
– Во время RL-обучения используем короткие цепочки рассуждений (короткие CoT) для экономии ресурсов
– На inference увеличиваем длину CoT, чтобы получить более детальные и понятные объяснения без накрутки стоимости обучения

Динамическое обновление датасета
– По мере роста точности удаляем примеры с accuracy > 90 %, чтобы не «портить» модель слишком лёгкими задачами
– Поддерживаем постоянный вызов модели на её пределе возможностей

Улучшенная reward-функция
– Комбинируем стандартный RL-reward с бонусами за разнообразие и глубину рассуждений
– Это позволяет модели учиться не только давать правильный ответ, но и объяснять логику своих решений

Преимущества Polaris
• Благодаря Polaris даже компактные LLM (4 B и 7 B) достигают и даже «тяжеловесов» (32 B–235 B) на AIME, MATH и GPQA
• Обучение на доступных GPU уровня consumer-grade — до 10× экономии ресурсов и затрат по сравнению с традиционными RL-пайплайнами

• Полный открытый стек: исходники, подборка данных и веса
• Простота и модульность: готовый к использованию фреймворк для быстрого внедрения и масштабирования без дорогостоящей инфраструктуры


Polaris доказывает, что качество данных и грамотная настройка RL-процесса важнее просто «больших моделей». С ним вы получите продвинутую reasoning-LLM, которую можно запустить локально и масштабировать везде, где есть обычная GPU.


Blog post: https://hkunlp.github.io/blog/2025/Polaris
Model: https://huggingface.co/POLARIS-Project
Code: https://github.com/ChenxinAn-fdu/POLARIS
Notion: https://honorable-payment-890.notion.site/POLARIS-A-POst-training-recipe-for-scaling-reinforcement-Learning-on-Advanced-ReasonIng-modelS-1dfa954ff7c38094923ec7772bf447a1

@ai_machinelearning_big_data

#ml #ai#Polaris #PostTraining #ReinforcementLearning #LLM