Да, я тут основываюсь на статье J. Bell, A summary of Euler's work on the pentagonal number theorem, Archive for History of Exact Sciences,
Vol. 64, No. 3 (May 2010), pp. 301-373, —
и вот абзац с хронологией оттуда.
(А вот его же препринт на arXiv-е, правда, сильно более короткий; кстати — кажется, первый раз, когда я вижу в аннотации препринта версию на латыни.)
Vol. 64, No. 3 (May 2010), pp. 301-373, —
и вот абзац с хронологией оттуда.
(А вот его же препринт на arXiv-е, правда, сильно более короткий; кстати — кажется, первый раз, когда я вижу в аннотации препринта версию на латыни.)
Возвращаясь к доказательству самого Эйлера — на него можно смотреть несколькими способами. Давайте сначала посмотрим на то, как оно у Эйлера записано. Он начинает с того, что разлагает бесконечное произведение (1-x)(1-x^2)(1-x^3)... по последнему не-единичному сомножителю, вылезающему при раскрытии скобок:
Получается бесконечная сумма уже конечных произведений. Дальше Эйлер забирает "в итог" первые слагаемые 1-x, выносит x^2 из оставшегося, и раскрывает скобки у (1-x), на который они все делятся:
И тут уже понятно, как нужно формулировать утверждения (где там степени образуют арифметическую прогрессию с какой разностью) — и что как только последовательность утверждений правильно записать, мгновенно получится доказательство по индукции.
Второй способ (чуть более современный взгляд) — я его увидел в статье G. Andrews, Euler's pentagonal number theorem, Mathematics Magazine 56 (1983), no. 5, 279-284 — состоит в том, чтобы рассмотреть такие суммы произведений, зависящие от двух переменных.
Тогда вынесение первых двух слагаемых и раскрытие первой скобки это функциональное уравнение:
Математические байки
(G. Andrews, Euler's pentagonal number theorem, Mathematics Magazine, vol. 56, 1983)
И ход доказательства Эйлера — это итеративное применение этого тождества.
Но третий, совершенно прекрасный, вероятностный взгляд на всё то же доказательство придумал Федя Петров. Он описан у него вот тут, но я всё-таки пару слов скажу.
Fedya Petrov's blog
Euler’s proof of pentagonal theorem
Visit the post for more.