Математические байки – Telegram
Математические байки
4.3K subscribers
1.44K photos
15 videos
27 files
914 links
Рассказы про разную математику.

Архив: http://dev.mccme.ru/~merzon/mirror/mathtabletalks/
Download Telegram
https://mccme.ru/free-books/dubna/protasov-sinfrac.pdf

стала бесплатно доступна электронная версия книги «Синусоида и фрактал: Элементы теории обработки сигналов и теории всплесков» В.Ю.Протасова по его лекциям на ЛШСМ

«Любой сигнал, будь то звук, изображение или другая функция, никогда не хранится в компьютере по точкам. Это дорого и неэффективно. Сигнал раскладывается в сумму других, «базовых» функций, и хранятся коэффициенты разложения. Главный вопрос — какую систему базовых функций использовать? И как построить хорошую систему, чтобы сигнал быстро и качественно воспроизводился и при этом занимал мало памяти? За это отвечает мощная и красивая математическая теория.

В течение десятилетий базовыми функциями были синус и косинус, что естественно, учитывая природу звука. Это — ряды Фурье, изобретенные более 200 лет назад. Однако, к середине XX века стало ясно, что они не отвечают современным запросам. Поиск новых конструкций, превосходящих ряды Фурье, оказался непростой задачей. Над этим трудилось не одно поколение математиков: функции Хаара, система Шеннона-Котельникова, всплески Мейера и Добеши, …. Новые функции уже не задаются явными формулами, а строятся как решения специальных уравнений. Они не являются гладкими, а, напротив, имеют свойства фракталов и самоподобных фигур. Сейчас они используются повсеместно при работе с фото, аудио и видео файлами, в компьютерной томографии, и т.д. Но математическая теория не стоит на месте…»

можно также купить книгу:
https://biblio.mccme.ru/node/46814
5 лет назад был отличный математический флэшмоб #12equations — в т.ч. как раз 22 июня писал про тангенс

…Очень люблю цитату из интервью Гельфанда, «я считал, что есть две математики — алгебраическая и геометрическая, и что геометрическая математика принципиально “трансцендентна” для алгебраической. (…) Когда я обнаружил, что синус можно записать алгебраически в виде ряда, барьер обрушился, математика стала единой».

В отличие от синуса и косинуса ряд для тангенса на первый взгляд выглядит хаотично:
x+x^3/3+2x^5/15+17x^7/315+…
Оказывается, за этим хаосом скрывается отличная комбинаторика…


сейчас описание комбинаторики опущу, а вместо этого приведу код, при помощи которого на эти коэффициенты можно посмотреть (потому что в лоб на бумажке это делать утомительно):

x = var('x')
taylor = tan(x).taylor(x,0,21)
E = [ taylor.coefficient(x,n)*factorial(n) for n in range(1,22,2) ]
print(E)


если не знаете ответа, то можно подумать про то, как на эти целые числа написать рекурренту, например (тут возможны разные ответы!)

или вот такой листок для курса Е.Смирнова про этот сюжет делал: https://dev.mccme.ru/~merzon/ium-combi/combi20-05-bernoulli.pdf
https://mccme.ru/free-books/dubna/vva-volumes.pdf

стала бесплатно доступна электронная версия книги «Ветвящиеся объёмы и группы отражений» В.А.Васильева по его рассказам на ЛШСМ

«Рассматривается восходящая к Архимеду и Ньютону задача о зависимости объема, отсекаемого плоскостью от ограниченного тела, от этой плоскости. В частности, мы докажем гипотезу В.И.Арнольда о том, что для тела с гладкой границей в четномерном пространстве этот объем не может алгебраически зависеть от коэффициентов уравнения плоскости, и приведем геометрические препятствия к такой алгебраичности в нечетномерном случае.

В книге рассказано об истории вопроса и о методах, позволяющих решать такие и подобные задачи (включая задачи о разрешимости уравнений в радикалах): теории монодромии, аналитическом продолжении, группах преобразований, порожденных отражениями, и топологии комплексных многообразий.»

можно также купить бумажную книгу:
https://biblio.mccme.ru/node/74704
mccme.ru/dubna/2025/

совсем скоро начинается XXIV Летняя школа «Современная математика» имени Виталия Арнольда

по ссылке есть расписание, анонсы курсов

видеозаписи большинства занятий появятся осенью, но большинство пленарных лекций планируется транслировать в вк-видео

откроется школа лекцией Александра Петровича Веселова про q-числа и их связь с узлами и косами (вск 20.07, 09:30)
Непрерывное математическое образование
mccme.ru/dubna/2025/ совсем скоро начинается XXIV Летняя школа «Современная математика» имени Виталия Арнольда по ссылке есть расписание, анонсы курсов видеозаписи большинства занятий появятся осенью, но большинство пленарных лекций планируется транслировать…
Я воспользуюсь случаем и порекламирую две другие (классные!) лекции Александра Петровича, «Магия марковских троек» (https://www.mathnet.ru/rus/present17717 ) и «Река Конвея и парус Арнольда» (https://www.mathnet.ru/rus/present21266 ) — и их с В.М. Бухштабером статью «Топограф Конвея, PGL_2(Z)-динамика и двузначные группы», https://www.mathnet.ru/rus/rm9886 .
Математические байки
Я воспользуюсь случаем и порекламирую две другие (классные!) лекции Александра Петровича, «Магия марковских троек» (https://www.mathnet.ru/rus/present17717 ) и «Река Конвея и парус Арнольда» (https://www.mathnet.ru/rus/present21266 ) — и их с В.М. Бухштабером…
Пусть есть квадратичная форма Q(x,y) с целыми коэффициентами — и пусть она не-знакоопределённая. Давайте рассматривать её на решётке Z^2 — сначала со стандартным базисом, а потом будем от базиса (e_1,e_2) переходить к « соседнему », заменяя один из векторов либо на их сумму, либо на их разность. И будем рисовать соответствующую картину на плоскости — области соответствуют (примитивным) векторам решётки, рассматриваемым с точностью до смены знака; отметки в них — значению Q на соответствующих векторах (Q(v)=Q(-v), так что выбор знака вектора неважен), рёбра — разделяют области, пары векторов из которых образуют базис, и ребро, разделяющее области для e_1 и e_2, упирается в области для e_1+e_2 и для e_1-e_2.

Скриншот из статьи Веселова и Бухштабера.
Если есть два исходных вектора, на которых Q одного знака — можно пойти искать векторы, на которых Q будет другого знака. И «реку Конвея», разделяющую значения разных знаков. И это делается довольно простым спуском.

Скриншоты из лекции Веселова: на первом — спускаемся к реке. На втором — дошли и идём вдоль неё. При этом через какое-то число шагов значения начнут повторяться.

И это позволяет доказать теорему о том, что цепная дробь квадратичной иррациональности периодична!
И ещё из ссылок: «Квадратичные формы, данные нам в ощущениях» Конвея — классные!
Ещё немного к завтрашней лекции А. П. Веселова — соседняя история про q-деформацию. Возьмём поле F_q из q элементов. И спросим: сколько k-мерных подпространств есть в F_q^{n}?
(Если формулировать другими словами — сколько точек в грассманиане Gr(k,n) над F_q?)

Оказывается, что получается многочлен от q. Но в него можно подставлять не только те значения q, для которых есть соответствующие поля (т.е. степени простых), но и вообще что угодно. Например, q=1. А что мы будем получать?

Например, сколько точек в проективном пространстве P^{n}(F_q) — или, что то же самое, сколько в F_q^{n+1} прямых через 0? Проективное пространство делится на аффинную карту F_q^n, в которой q^n точек, и проективное пространство «точек на бесконечности» на единицу меньшей размерности; по индукции получаем
q^n+q^{n-1}+…+q+1.
В частности, при q=1 этот многочлен равен n+1.

Определение. q-аналогом числа n называется число точек n-1-мерной проективной плоскости P(F_q^n)
[n]_q := q^{n-1}+…+q+1.

Несложно видеть, что k- и n-k-мерных подпространств в F_q^n одинаковое количество (в качестве вещественной ассоциации — можно брать взятие ортогонального дополнения в качестве биекции), поэтому этот же ответ справедлив и для количества (n-1)-мерных подпространств.

Если определить q-факториал по индукции
[0]!=1, [n]!=[n-1]! * [n],
то он соответствует количеству полных флагов : цепочек подпространств
0=V_0 \subset V_1 \subset … \subset V_{n-1} \subset V_{n} = F_q^n,
где V_i — i-мерное.

Наконец, каждое k-мерное подпространство V_k участвует в
[k]! * [n-k]!
полных флагах (потому что нужно продолжить цепочку вниз — это [k]! вариантов — и вверх, их [n-k]!).
Так что точек в грассманиание Gr(k,n) —
[n]! / ([k]! [n-k]!).

При подстановке q=1 получается как раз биномиальный коэффициент!
+ два скриншота из дубнинской брошюры Е. Ю. Смирнова, Диаграммы Юнга, плоские разбиения и знакочередующиеся матрицы :
В оооочень больших кавычках можно говорить, что выбор подпространств и действия на них линейными преобразованиями над «полем из одного элемента» (которого не существует) превращаются в комбинаторику (выбор k элементов из n) и действие групп перестановок. Но поскольку мне тут для аккуратного рассказа знаний не хватает — чтобы не соврать, я так говорить не буду. 🙂

P.S. Курс Г. Б. Шабата в 2009 году, «Когда 1 = 0…»:
анонс https://old.mccme.ru/dubna/2009/courses/shabat.htm + видеозаписи: https://www.mathnet.ru/present9121
Forwarded from Wild Mathing
🎬 Новое видео о математических бильярдах уже на канале. По мотивам лекции Сергея Маркелова «Открытые проблемы элементарной геометрии». Рекомендую смотреть на крупном экране и с хорошим звуком

#wildmathing #video
возьмем какой-нибудь многочлен (от одной переменной) и возведем в большую степень

ну будет непонятное море мономов с большими коэффициентами… но тут уже обсужалось, что полезно сделать в таком случае: построить график

что мы увидим? почему?

под спойлером скрыт пример картинки (конкретно — `list_plot(((2+7*x+x^4+5*x^5)^57).coefficients(),plotjoined=True)`)

(такой иллюстрацией ЦПТ поделился Александр Ч. в комментариях у «Кроссворда Тьюринга»)
https://www.mpim-bonn.mpg.de/maninmemorial

конференция памяти Ю.И.Манина (11-15 августа; большинство докладов планируют транслировать)
К этому: давным-давно хочу написать про лекцию Дональда Кнута ко дню Пи — про неё несколько лет назад писали коллеги.

И начать хочу с той же задачи, с которой начинает Кнут. Бросим две обычные (честные!) игральные кости. Результат может быть от 2 до 12 очков — но (как известно любому игроку в настольные игры!) шанс выкинуть 7 очков (1/6) гораздо больше, чем выкинуть 2 или 12 очков (1/36). Так вот, вопрос:

А нельзя ли сделать такие две кости, чтобы суммарное число очков принимало все значения от 2 до 12 равновероятно?


Вопрос не такой очевидный — ведь если кинуть монетку, равновероятно падающую сторонами «0» и «1», и независимо от неё «трёхгранную» кость, равновероятно дающую «1», «3», и «5» — то суммарный результат будет равновероятно принимать все значения от 1 до 6 — то есть как раз быть обычной игральной костью.


И это тот сюжет, когда можно достаточно естественно если не придумать, то рассказать характеристические функции для случайных величин.
Пусть у нас есть случайная величина — результат бросания кости — которая принимает неотрицательные целые значения. Её распределение — это то, с какой вероятностью p_n принимается какое значение n. То есть последовательность чисел. А в стандартный — и очень мощный — приём в комбинаторике это превратить последовательность чисел p_n в производящую функцию
F(x) = \sum_n p_n x^n.

В скобках — в этом канале производящие функции уже несколько раз появлялись: вот тут в связи с числами Каталана, вот тут в связи с решёткой Е_8, вот тут в связи с разбиением числа в сумму слагаемых и пентагональной теоремой Эйлера и (чуть ниже) тройным произведением Якоби / предсказанием позитрона Дираком. Первая ссылка, которая мне тут приходит в голову — это отличные «Лекции о производящих функциях» Сергея Константиновича Ландо, насколько я понимаю, потом легшие в основу первой части его же книги «Введение в дискретную математику» (электронная версия / МЦНМО). Но я дальше буду писать так, как будто о производящих функциях мы ничего не знаем.

Так вот — пусть у нас есть две случайные величины: первая принимает значение n с вероятностью p_n, вторая — с вероятностью q_n. Соберём из этих последовательностей производящие функции:
F(x) = \sum_n p_n x^n.
G(x) = \sum_m q_m x^m.

Тогда, если эти случайные величины независимы, вероятность того, что первая приняла значение n, а вторая m, равно p_n q_m; в этом случае сумма принимает значение m+n, и соответствующий вклад в производящую функцию, которую мы сопоставим сумме величин, равен
p_n q_m x^{n+m} = (p_n x^n)* (q_m x^m).
То есть это произведение соответствующих мономов. Значит, производящая функция для распределения суммы независимых случайных величин — это просто произведение производящих функция для распределений слагаемых, F(x)*G(x) !