Mathematical Models of the Real World – Telegram
Mathematical Models of the Real World
805 subscribers
317 photos
3 videos
20 files
876 links
Channel of Professor Andrey Uskov @ProfUskov about mathematical models.
Download Telegram
Хорошо изучено логистическое отображение - одно из базовых уравнений теории детерминированного хаоса:
x(n+1)=rx(n)(1-x(n))
r — положительный параметр.
https://ru.wikipedia.org/wiki/%D0%9B%D0%BE%D0%B3%D0%B8%D1%81%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5_%D0%BE%D1%82%D0%BE%D0%B1%D1%80%D0%B0%D0%B6%D0%B5%D0%BD%D0%B8%D0%B5

А как оно себя будет вести при отрицательном параметре r?
Подозреваю, что узнать это можно из соображений симметрии, используя случай с положительным параметром, не проводя полный анализ.
🤔2
Если простая аппроксимирующая формула начинает вдруг сходиться с данными с чудовищной точностью, то почти верное это не случайность...
🤔4
Кит Йейтс. Математика жизни и смерти, 2021
Метод мечения и повторного отлова
🔥3🤔1
Паразиты и поведение...
Toxoplasma gondii является простейшим паразитом, способным инфицировать любые теплокровные виды. Серопозитивные волки с большей вероятностью принимали решения с высоким риском.
Вероятность того, что серопозитивный волк станет вожаком стаи, более чем в 46 раз выше, чем у серонегативного волка.
https://www.nature.com/articles/s42003-022-04122-0
🔥1
Вот какую книжку сейчас листаю...
Я бы правда на месте автора выдержал стиль текста и в названии... в таком случае лучше назвать: Математика для дол***бов...
🔥4
Проблема колебаний обилия биологических видов и хаос

1. Факт значительных колебаний во времени (или пространстве) обилия тех или иных видов чрезвычайно широко распространен и известен каждому из собственного повседневного опыта. Например, речь может идти о колебании урожайности сельскохозяйственных культур, либо о колебаниях численности сельскохозяйственных вредителей в саду, либо попросту о колебаниях обилия грибов или ягод в лесу.
Расхожей колодкой для объяснения подобных колебаний является модель, включающая в себя как естественные, так и антропоморфные факторы окружающей среды. Первая группа объясняет динамику обилия видов, в частности, погодными факторами, а вторая — загрязнениями природной среды, от которых и происходит всяческое зло. Но попытки количественного сопоставления, скажем, урожайности сельскохозяйственных культур с ходом погодных явлений, либо с уровнем загрязнений мало успешны, если не говорить, конечно, о критических ситуациях типа исключительной засухи или наводнения, когда урожай погибает полностью от вполне очевидной причины.

2. Иной подход к объяснению колебаний обилия видов, согласно которому эти колебания (по крайней мере, в некоторых случаях) объясняются внутривидовыми и межвидовыми взаимодействиями. В XIX веке рассматривались дифференциальные уравнения роста одновидовой популяции; они привели к моделям экспоненциального и логистического роста, из которых последняя привлекла особое внимание в XX в., сделавшись предметом оживленной полемики. Но для экологии одновидовая популяция — проблема слишком узкая, и особое значение придается работам А. Лотки и В. Вольтерра, в которых впервые появляются системы уравнений, относящиеся к многовидовым сообществам. Прежде всего, имеются в виду модели хищник-жертва и модель межвидовой конкуренции, частным случаем которых является модель с единственным видом, имеющим экспоненциальный (знаменитое уравнение мальтузианского роста) или логистический рост.
Надежды на описание этими моделями каких-либо природных явлений типа колебаний численности карасей и щук (и тем более — бандитов и честных тружеников) также не сбылись.

3. Последние результаты...
Если популяция будет жить без каких-либо соседей, с контролируемой температурой, с контролируемым количеством еды — сможем ли мы тогда предсказать, например, как будет меняться численность особей в этой популяции? Сотрудники Кёльнского университета проделали такой эксперимент и пришли к выводу, что предсказать тут можно разве что хаос, в том смысле, что численность популяции даже при абсолютно контролируемых внешних условиях будет меняться хаотично.
Исследователи построили, во-первых, математическую модель, которая описывает поведение популяции одноклеточных организмов в полностью контролируемых условиях, а во-вторых, поставили настоящие эксперименты с двумя видами одноклеточных эукариот из группы Страменопил. И в теории, и на практике в обеих популяциях имел место динамический, или детерминированный, хаос: можно было заранее сказать, что в ответ на какое-то событие популяция как-то изменится, но вот точно предсказать величину изменения было невозможно.

Источники:
Тутубалин В. Н. и др. Математическое моделирование в экологии. Историко-методологический анализ. Издательство «Языки славянских культур», 1999. - 208 с.
https://portal.uni-koeln.de/en/universitaet/aktuell/press-releases/single-news/why-are-there-so-many-species-chaos-is-an-important-factor-for-biodiversity
https://www.pnas.org/doi/10.1073/pnas.2209601119
На русском https://www.nkj.ru/news/46743/
🤔2
Строительство крупнейшей в мире радиоастрономической обсерватории Square Kilometre Array (SKA, «Антенная решетка площадью 1 км2») официально началось в Австралии после 30 лет разработки.

SKA называют одним из крупнейших научных проектов XXI века. Он позволит ученым заглянуть в ранний период истории Вселенной, когда формировались первые звезды и галактики. Он будет использоваться для изучения темной энергии и причин расширения Вселенной, а также для потенциального поиска внеземной жизни.
🔥5
Управление хаосом
Дается обзор задач и методов управления хаосом – области интенсивных исследований последнего десятилетия. Подробно рассматриваются три исторически первых и наиболее активно развивающихся направления: программное управление, основанное на периодическом возбуждении системы; метод линеаризации отображения Пуанкаре (метод OGY), метод запаздывающей обратной связи (метод Пирагаса). Приводятся основные результаты, полученные в рамках традиционных методов линейного, нелинейного, адаптивного управления, нейросетевых и нечетких систем. Формулируются нерешенные проблемы, связанные, прежде всего, с обоснованием методов. Описанию наиболее интересных приложений будет посвящена вторая часть обзора.
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=1873&option_lang=rus
Рассматриваются применения как в различных научных областях: механике (управление маятниками, балками, пластинами, трением), физике (управление турбулентностью, лазерами, управление хаосом в плазме и распространением дипольных доменов), химии, биологии, экологии, экономике, медицине, так и в различных отраслях техники: механических системах (управление виброформирователями, микрокантилеверами, кранами, судами), космических аппаратах, электрических и электронных системах, системах связи, информационных системах, химической и обрабатывающей промышленностях (перемешивание потоков жидкостей и обработка сыпучих материалов).
https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=1551&option_lang=rus
🔥4
Забавно как история науки демонстрирует свое спиральное развитие... отвергнутые идеи и концепции вдруг всплывают вновь уже на следующем уровне...

Так было со светом... только победила волновая концепция природы света, как тут же появилась квантовая механика, где свет снова частица, но с волновыми свойствами... как и все остальные частицы...
В некоторых современных моделях микромира видна аллюзия к стихиям Аристотеля, полностью отвергнутая победой атомистики...
В биологии свой цикл... совсем недавно победила генетика, которая утверждала, что никакие условия жизни организма не могут непосредственно передаваться его детям в его генетическом коде... В СССР на этом погорел и был проклят Лысенко, получив статус главного советского лжеученого 20-го века...
И вот читаем... испуганные мыши передают микроРНК своим детям... и те наследуют поведение родителей... но этого мало... указанное микроРНК может быть выделено и внедрено в зародыши мышей не подвергавшихся стрессу, после чего они начинают вести себя также как дети испуганных родителей...
https://www.pnas.org/doi/10.1073/pnas.1508347112
На русском https://www.nkj.ru/news/27202/
🤔32
О прикладной науке

Часто в упрек прикладным академическим дисциплинам (таким как электроника, информационные технологии, химическая технология, медицина и др.) ставится то, что большая часть основных результатов получена не учеными, а практиками, порой, далекими от академических кругов, мало того, научное сообщество иногда присваивает себе эти результаты. Кроме того, ведущие университеты существуют в богатых странах не делая эти страны богатыми, а наоборот, богатые страны могут позволить себе иметь мощные университеты. /См., например, Нассим Талеб "Антихрупкость"/.
Если это даже так, то можно заметить, что прикладная наука все равно необходима... Ибо кто без нее будет собирать, обобщать в виде ясных теорий и публиковать в доступном для понимания и ознакомления всеми заинтересованными лицами виде полученные знания?
🤔3👍1
👍2🤡2👎1🔥1
Бляха-муха
👍2
Ёшкин кот
👍2🔥1
Ядрёна вошь
🔥2