Нерегулярная рубрика «рабочие картинки» (они красивые, хочется поделиться): часть поверхности Маркова
x^2+y^2+z^2-xyz = D
и некоторые слоения на ней.
x^2+y^2+z^2-xyz = D
и некоторые слоения на ней.
Женя Кац напомнила про видео — мыльные пузыри в сильный мороз можно заморозить(!). Я вот вживую такого никогда не видел…
YouTube
Морозные узоры на мыльных пузырях. Зимние эксперименты
Ирина @irina_magic.lab вдохновила нас на проведение серии экспериментов с мыльными пузырями. При морозе в минус 10-15 на плёнке мыльного пузыря очень быстро появляются морозные узоры!
Делаем самодельный раствор из Fairy, глицерина и дистиллированной воды.…
Делаем самодельный раствор из Fairy, глицерина и дистиллированной воды.…
Forwarded from Непрерывное математическое образование
https://mccme.ru/nir/seminar/
в четверг (11.01) продолжится семинар учителей математики:
А.Д.Блинков будет рассказывать про книжку «Площади без формул», которая скоро выйдет в серии «Школьные математические кружки»
как обычно: 19:00, столовая МЦНМО, приглашаются все желающие
в четверг (11.01) продолжится семинар учителей математики:
А.Д.Блинков будет рассказывать про книжку «Площади без формул», которая скоро выйдет в серии «Школьные математические кружки»
как обычно: 19:00, столовая МЦНМО, приглашаются все желающие
Forwarded from tropical saint petersburg
St. Petersburg mathematicians and their discoveries
Книжка про математиков Петербурга и их открытия — завершена.
Теперь напечатаем малым тиражом и разошлём авторам и всем причастным.
Кому интересно иметь её в бумажном виде — печатайте сами себе в каком-нибудь самиздате (вроде есть сайты, куда можно pdf загрузить, и потом в мягком переплёте получить по почте).
Книжка про математиков Петербурга и их открытия — завершена.
Теперь напечатаем малым тиражом и разошлём авторам и всем причастным.
Кому интересно иметь её в бумажном виде — печатайте сами себе в каком-нибудь самиздате (вроде есть сайты, куда можно pdf загрузить, и потом в мягком переплёте получить по почте).
Три дня назад на небе можно было увидеть аккуратную половинку Луны (почти точно в фазе первой четверти) — и очень яркую «звёздочку» рядом. Первое, что приходит в голову при виде чего-то столь яркого, это Венера и Юпитер. (Вообще, Марс иногда бывает очень ярким, но не так часто; есть ещё Сириус, но давайте мы его временно заметём под ковёр).
Так вот: допустим, мы ограничили выбор Венерой и Юпитером. Интересно, что написанного выше достаточно, чтобы один из этих вариантов исключить! Как думаете, какой?
(image credit: NASA, вырезано из What’s Up video)
Так вот: допустим, мы ограничили выбор Венерой и Юпитером. Интересно, что написанного выше достаточно, чтобы один из этих вариантов исключить! Как думаете, какой?
(image credit: NASA, вырезано из What’s Up video)
Какой именно вариант можно искючить?
Final Results
71%
Можно исключить Венеру, рядом с Луной был Юпитер.
29%
Можно исключить Юпитер, рядом с Луной была Венера.
Математические байки
Какой именно вариант можно искючить?
Ответ:
Луна в первой четверти означает, что направление на неё почти под прямым углом к направлению на Солнце. А Венера — внутренняя планета, так что на 90 градусов выйти не может.
Если говорить более аккуратно, то радиус орбиты у неё — чуть больше 0.7 радиуса орбиты Земли (точнее, большая полуось 0.723 а.е., но я наизусть только 0.7 помню — одну цифру помнить проще 🙂 ; ну и на уровне прикидки в уме эллиптичностью пренебрегаем, всё-таки там эксцентриситеты порядка процента)
Значит, Венера не может быть от Солнца на угловом расстоянии, большем, чем (примерно) arcsin 0.7.
Ну а sqrt{2}/2=0.707..., так что этот угол это с отличной точностью 45 градусов.
Итак, максимальный угол между направлениями на Венеру и Солнце это чуть больше, чем 45 градусов (на самом деле 47, но это я уже потом посмотрел — а тут прикидывал на ходу, и кажется, неплохо получилось).
Итого:
*) угол Солнце-Земля-Луна в этот момент примерно равен 90 градусам (потому что от Луны освещена половина),
*) угол Солнце-Земля-Венера никогда не больше 47 градусов.
Значит, в момент наблюдения угол Венера-Земля-Луна был не меньше 43 градусов. А не единицы градусов, которые « рядом » на небе! Так что Венеру исключаем.
Луна в первой четверти означает, что направление на неё почти под прямым углом к направлению на Солнце. А Венера — внутренняя планета, так что на 90 градусов выйти не может.
Если говорить более аккуратно, то радиус орбиты у неё — чуть больше 0.7 радиуса орбиты Земли (точнее, большая полуось 0.723 а.е., но я наизусть только 0.7 помню — одну цифру помнить проще 🙂 ; ну и на уровне прикидки в уме эллиптичностью пренебрегаем, всё-таки там эксцентриситеты порядка процента)
Значит, Венера не может быть от Солнца на угловом расстоянии, большем, чем (примерно) arcsin 0.7.
Ну а sqrt{2}/2=0.707..., так что этот угол это с отличной точностью 45 градусов.
Итак, максимальный угол между направлениями на Венеру и Солнце это чуть больше, чем 45 градусов (на самом деле 47, но это я уже потом посмотрел — а тут прикидывал на ходу, и кажется, неплохо получилось).
Итого:
*) угол Солнце-Земля-Луна в этот момент примерно равен 90 градусам (потому что от Луны освещена половина),
*) угол Солнце-Земля-Венера никогда не больше 47 градусов.
Значит, в момент наблюдения угол Венера-Земля-Луна был не меньше 43 градусов. А не единицы градусов, которые « рядом » на небе! Так что Венеру исключаем.
Forwarded from Математические этюды
Forwarded from Непрерывное математическое образование
This media is not supported in your browser
VIEW IN TELEGRAM
появление эллипса на круглом листе бумаги ( via vk.com/thebeautyoftruth )
Forwarded from Математические этюды
Любую гладкую кривую можно увидеть, нарисовав не саму кривую, а множество касательных к ней. Понятие огибающей подробно описано в сюжете «Парабола: изонить», в котором в качестве огибающей семейства прямых возникает парабола.
Но построение касательных не такое простое дело. Продемонстрируем, как увидеть конические сечения — эллипс, гиперболу, параболу — ничего не считая и не рисуя, а просто складывая листок бумаги. Сюжет сегодняшнего Математического вторника: «Эллипс, гипербола, парабола: складывание листа бумаги» https://etudes.ru/models/conic-sections-paper-folding/ . Для эллипса и гиперболы понадобится вырезать кружок из бумаги, для параболы – просто прямоугольный лист.
Похожие картинки можно уже было видеть в миниатюрах Эллипс как огибающая, Гипербола как огибающая, Парабола как огибающая. Но в них надо уметь строить перпендикуляр к отрезку, а в указанном сегодня способе складывания листочка эта операция «зашита» в сам способ складывания.
Но построение касательных не такое простое дело. Продемонстрируем, как увидеть конические сечения — эллипс, гиперболу, параболу — ничего не считая и не рисуя, а просто складывая листок бумаги. Сюжет сегодняшнего Математического вторника: «Эллипс, гипербола, парабола: складывание листа бумаги» https://etudes.ru/models/conic-sections-paper-folding/ . Для эллипса и гиперболы понадобится вырезать кружок из бумаги, для параболы – просто прямоугольный лист.
Похожие картинки можно уже было видеть в миниатюрах Эллипс как огибающая, Гипербола как огибающая, Парабола как огибающая. Но в них надо уметь строить перпендикуляр к отрезку, а в указанном сегодня способе складывания листочка эта операция «зашита» в сам способ складывания.
Давайте я чуть-чуть добавлю к тому, что пишут коллеги.
Все знают, что планеты движутся вокруг звезды по эллипсам. И навскидку не очень ясно, как это утверждение доказывать, не закапываясь в какие-нибудь жуткие выкладки.
Лет пять назад появилось выложил замечательное видео (на канале minutephysics с 3blue1brown) про лекцию Фейнмана об этом, « Feynman’s Lost Lecture ».
Я его очень рекомендую посмотреть — но если коротко, есть совершенно замечательный промежуточный шаг, который, услышав однажды, забыть нельзя.
Отложим скорости планеты в разные моменты времени от начала координат. Оказывается, что концы этих векторов образуют окружность — просто с центром не в начале координат!
(«Годограф скоростей — круглый»)
Чтобы вывести это утверждение, нужны и закон всемирного тяготения, и закон сохранения момента импульса (а точнее, следующий из него второй закон Кеплера — правило площадей). А вывод из него эллиптичности орбиты связан как раз с картинкой с эллипсом-огибающей!
(Я немного об этом когда-то писал — см. тут и ниже — но очень советую посмотреть и видео, и страницы/миниатюры Мат. Этюдов про огибающие.)
Все знают, что планеты движутся вокруг звезды по эллипсам. И навскидку не очень ясно, как это утверждение доказывать, не закапываясь в какие-нибудь жуткие выкладки.
Лет пять назад появилось выложил замечательное видео (на канале minutephysics с 3blue1brown) про лекцию Фейнмана об этом, « Feynman’s Lost Lecture ».
Я его очень рекомендую посмотреть — но если коротко, есть совершенно замечательный промежуточный шаг, который, услышав однажды, забыть нельзя.
Отложим скорости планеты в разные моменты времени от начала координат. Оказывается, что концы этих векторов образуют окружность — просто с центром не в начале координат!
(«Годограф скоростей — круглый»)
Чтобы вывести это утверждение, нужны и закон всемирного тяготения, и закон сохранения момента импульса (а точнее, следующий из него второй закон Кеплера — правило площадей). А вывод из него эллиптичности орбиты связан как раз с картинкой с эллипсом-огибающей!
(Я немного об этом когда-то писал — см. тут и ниже — но очень советую посмотреть и видео, и страницы/миниатюры Мат. Этюдов про огибающие.)
Telegram
Математические этюды
Любую гладкую кривую можно увидеть, нарисовав не саму кривую, а множество касательных к ней. Понятие огибающей подробно описано в сюжете «Парабола: изонить», в котором в качестве огибающей семейства прямых возникает парабола.
Но построение касательных не…
Но построение касательных не…
Forwarded from Непрерывное математическое образование
YouTube
Surprises from rubbing the wrong way - A public lecture by Tadashi Tokieda
Surprises from rubbing the wrong way
A public lecture by Tadashi Tokieda
February 7, 2024
Wolfensohn Hall
Friction, stickiness, jamming, . . . we tend to pooh-pooh at these conditions as spoilers which dull life. This lecture, however, will perform many…
A public lecture by Tadashi Tokieda
February 7, 2024
Wolfensohn Hall
Friction, stickiness, jamming, . . . we tend to pooh-pooh at these conditions as spoilers which dull life. This lecture, however, will perform many…
Forwarded from Непрерывное математическое образование
Анатолий Моисеевич Вершик (28.12.1933–14.02.2024)